MANUAL

 for
8 lb Coffee Roaster

Installation

\&

Operations

CONTENTS

1. GENERAL DESCRIPTION \& EQUIPMENT ARRANGEMENT
2. LIST OF PARTS \& DESCRIPTIONS
3. INSTALLATION PROCEDURES \& WIRING DIAGRAMS
4. PRINCIPLES OF OPERATIONS
5. ROASTING PROCEDURES
6. DISMANTLING INSTRUCTIONS

$$
\begin{aligned}
& 8-186 \\
& z-191
\end{aligned}
$$

SIVETZ COFFEE INC.
349 SW 4th Street
CORVALLIS, OREGON 97333
8 Ib ROASTER - ELECTRIC WIRING
actual shumitic

LABEL on ROASTER PANEL- ELECTRICAL WIRING DIAGRAM \& COMPONENTS.
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
2 Coils, 3 Screws, 3 Nuts, 10 Washers.
\qquad SUGGESTION TO PURCHASER OF COFFEE BEAN ROASTING MACHINE:
\qquad
\qquad EACH USER SHOULD HAVE ON HAND AS SPARE PARTS AT LEAST two spore heaters.
\qquad Know how to replace heaters, or have electrician/appliance repair shop that can.
NOTE:- CUSTOMERS HAVE REPEATEDLY GONE INTO A PANIC WHEN THEY FIND THEY HAVE BURNED OUT A
\qquad HEATER, AND HAVE NOT KEPT SPARES ON HAND. Normally one spare heater is furnished with original equipment. However, the life of these resistance heaters is a function of many variables, some of which are: voltage used, heater rating (12 or 14 ohm), frequency of roasting, amounts of stones, foreign matter falling into perforations, etc.

INTRODUCTORY REMARKS
 sivetz COFFEE, Inc.
 COFFEE BEAN ROASTING MACHINES
 Extraction, Engineering \& Consulting 349 S.W. 4th ST.
 CORVALLIS, OREGON 97333-U.S.A.
 Phone 503-753-9713
 FAX 503-757-7644

You now own a modern fluid bed coffee bean roasting machine. It's characteristics are such that the once thru air flow that spouts heats and mixes the beans, gives very uniform and fast heat transfer. The result is a very uniformly roasted coffee bean batch, free of tars smokey deposits, free of harsh bitey tastes, producing a well developed bean physically as well as maximizing flavor and aroma.
These positive features can only be appreciated when one compares the "baked" taste harshness and bite from cy linder roasted beans.

A very important feature of a fluid bed roaster, is our ability to measure accurately the bean temperature with an inserted thermometer. This allows for accurate degrees of roasting as well as reproducability which cylinder roasters can not do.
All bean contact surfaces are stainless steel, and after some use the dark patina acquired in the roast chamber need not be removed. The 10.6 Kw 钽 amp 240 V unit will run for many years when properly used. Batch sizes should not be less than lbs nor more than 8 lbs. When roasting manually, that is, watching bean temperature to shut off heat at desired end point, note that human mental wanderings often allow the bean temperature to go above that point desired, and that is why on other models we furnish automatic heat cutoff bean temp. controllers. It is very important that the air flow adjustments by the voltage regulator be made so that the beans spout to the top level of chamber, and MOST NEVER STOP, otherwise beans can burn. In such an event one must have an emergency procedure to stop heating, lay chamber on metal or concrete floor, and hoe out smoking hot beans to allow to cool and to apply a hand water spray.

One can roast w/o a $1 / 4^{\prime \prime}$ mesh screen to allow chaff and dust to freely fly out, w/o losing any beans from chamber, hence the fine air blower adjustment. Great care must be taken when using the screen cover, that at near $390^{\circ} \mathrm{F}$ when much chaff is released, that all that chaff does not blind the screen and choke off air flow and hence cause bean movement to stop. If one chooses to use the screen at that time, the blinding chaff can be released by snapping off one corner of the screen and also blowing by mouth, during this 60 second period. A half blinded screen is OK, but a full blinded screen is not safe. Read this manual carefully before use of the roaster and before installation of wiring.

GENERAL DESCRIPTION

1. S. PATFNT 3.964,175

- see illustrations -

> Sivetz. Coffee, Inc.
> 3.49 SW the Street
> Corvallis. OR 97333

The 8 lb green coffee bean roaster system consists of a roast chamber, a voltage regulator to control blower speed and air flow(so as to control bean levitation (spouting) during the drying and pyrolysis cycles), a safety air pressure switch, that will not allow heat to come on until blower is operating,
option - an overhead vent fan drawing air away from about the mouth of the roast chamber, and passing it through the chaff collection cyclone, and then blowing the "particle-free" air outside the building.

The roast chamber heaters are composed of 3 elements each generating 3.5 Kw . They are operated on 240 volts and each element draws 15 amperes. A reset button closes electrical contactor with red-light "on" signals" heat is on".

It is up to the operator to keep sufficient air flow through the spouting beans to assure continual movement, of about 6" " above bean bed. Less movement may cause beans to stop, in which case localized beans at base of cone will burn. Too much spouting wastes hot air and takes longer time to roast.
wither bean tens. The degree of roast is controlled by continual monitoring the dial thermometer in the beans ($3^{\prime \prime}$ insertion exactly into bean chamber). When the desired degree of roast is attained(as judged by dial thermometer reading), e.g. $450^{\circ} \mathrm{F}$, the wat how
controller causer the contactor to open, which stops heating. There may be a 30 F to 60 F override depending on beans, degree of roast, etc., but 10 t 20 xa . of water spray from nozzle, after heat is cut off, will minimize over-ride of temperature, and show a positive decline in bean temperature. Continuing air flow will cool the "just" roasted beans to near room temperature.

The spouting air flow can be stopped, and the roasted beans can be scooped out of the roast chamber or be sucked out by a shop vacuum (option -not included). To preserve "just roast" aroma \& flavor freshness, the "just roasted beans" must be placed in tightly sealed jars (gallon holds 3 lbs), in a freezer.

Depending on number of roasts, line voltage, abuse of equipment, etc. a heater element may fail, and this can be confirmed exactly from" pave "ammeter. The chamber will then have to be disconected from its power supplies, be dismantled, and the "failed" heating element replaced. (TIME to do about 1 hour).

The operator must remain at the roaster at all times to assure of proper bean spouting. Initially green beans lose weight and a lower voltage to blowers is required to maintain 6^{\prime} "spout movement; over $400^{\circ} \mathrm{F}$ when beans swell to almost twice their initial volume, less air flow is required. Roast/cool time is $10 / 4 \mathrm{~min}$.

9 min reasts
5 1b
8 lb
11 1b
$\$ 1280 \mathrm{pp} \quad \$ 1850$ FOB $\$ 2,550$ FOB
Add \$ 1200 for blower \& cyclone
\$ 2480
3,050
3,950
FOB

Add \$ 1,200 for frame \& assembly on frame
\$ 3,680
$\$ 4,250$
5,150

Add \$ 2,000 for control panel, water spray, \& ammeter
\$ 5,680
\$6,250
7,150
FOB

PRE ASSEMBLED Chaff Collection Cyclone \& Vent Blower on Frame for use with

Simple LOW COST starting Model

 8 lbs Green Beans 10.5 Kw $240 V$
Coffee Roasting Machine

ELECTRIC
3 Fixed resistance heaters..
9.125 stainless steel tube with cone.
$13^{\prime \prime} \times 13^{\prime \prime} \times 36^{\prime \prime}$ high metal cabinet. (2" thick insulation).
Roasting time: 10 minutes
Bean temperature monitoring \& end cutoff control MANUAL
by looking at dial thermometer -3" insertion.

ATTENDED ROASTER

U. S. PATENT 3,964,175
sivetz COFFEE, Inc.
COFFEE BEAN ROASTING MACHINES
ENGINEERING \& CONSULTING
349 S.W. 4th ST
CORVALLIS, OREGON 97333 - U.S.A.

Contral Pavel
816 Rouster.

General Arrangement \& External Wiring

ECONOMICAL \& SIMPLE

Installation \& Use

of 3 and 8 lb

ELECTRIC COFFEE BEAN ROASTING MACHINES

SERVICES REQUIRED:

a) WALL FAN for room ventilation \& spot light.
b) Two 120 V duplex wall outlets each on 15 or 20 ampere circuit breakers.
c) One 240 V 60 ampere circuit breakers from building panel.
contacts
STEP 1 ELECTRICIAN connects 240 V power supply to \wedge
$L_{1} \& L_{2} \&$ Ground from building breaker panel. Then connect...
a) $1 / 4^{\prime \prime} 0 . D$. Poly tube to air pressure switch from base of roast chamber.
b) "PLUG IN" 240V heater cord from roast chamber to pond mount ad receptacle wined to costate
c) "Plug-in" 120 V blower cord from voltage regulator into wall outlet.
drue-d) INSERT PR SW ${ }_{\text {A to }}^{2 w 0 i 1}$ Lion , power supply for Mag. Cont. (\sec Wiving DWG)
e) Set spot light to shine into bean chamber - connect 120 V .

STEP 2 YOU ARE NDW READY TO ROAST ...about 9 minutes
a) Weigh 8.0 lbs green coffee beans. Pour beans into roast chamber. Start A_{1} FAN.
b) Set in . thermos. ${ }^{\text {couple }}$ in front wall of roast chamber ($2^{\prime \prime}$ inside chamber).
c) Place screen ($1 / 4$ mesh) over top opening of roast chamber with clamps,
d) Turn up blower voltage until beans are spouting just below top of chamber.
e) Push 'RESET" button for heating. Red pilot light comes "ON".
f) Dial down to reduce blower speed to keep spouting beans below top (as they dry)

NOTE: g) When beans reach 4500F, wa Willow" cunthel, Heating ends \& cooling starts. Red light goes out. Water spray cooling may or may not be required.
h) The roasted beans will cool down to 1200 F in about 4 minutes.
i) Remove top screen after shutting off blower power.
j) Remove thermos couple
k) Scoop out w plastic cup roasted cooled beans.

1) Pour roasted beans into gallon jar, seal and place in Freezer to PRESERVE FRESHNESS \& AROMA

LIST of PARTS to 8 lb coffee bean roasting machine

1. ROAST CHAMBER

a) Dimensions: $13^{\prime \prime} \times 13^{\prime \prime} \times 33^{\prime \prime}$ high, with $9.1^{\prime \prime} \mathrm{D}$ ss in top with cone.
b) ELECTRICAL CONNECTIONS:

- 240 Volt 3 prong 50 amp . cord for 45 amp . (HTRS)

CONTROL PANEL *

- 120 " " " 10 " " for blower

Contains magnetic contactor for heating power \& receptacle.
Air press. switch, ammeter, heater pilot light, reset buttol to start heating, and Watlow bean temperature high limit controller with rejay, and heating time counter, panel switcl
2. VOLTAGE REGULATOR

Controls speed of blower, hence air flow and pressure so that coffee beans can be levitated to peak out near top flange level. Superior Elec. Model 3PN116B rated 120 V in, 140V out, 1.2 KVA with 10 amp fuse $>$ switch.
3. MISCL. PARTS
aptran a) Dial thermometer, range 50 to 5000 F . Insert only $3^{\prime \prime}$ into chamber.
b) $1 / 4^{\prime \prime}$ mesh screen to set on top to keep beans from flying out.
c) Two clamps to hold screen down.
d) Red pilot light on FURNAS to show HEAY is "ON".
e) Water spray systemptional cleant
f) Intake air filter Inspect periodically, and change as required. A dirty air filter will reduce air flow limiting amount of beans that can be levitated, and can cause excess heating of intake air.
g) One spare heater Q 39585

4. AUX. PARTS

a) CHAFF COLLECTION CYCLONE: $22^{\prime \prime} \mathrm{D} \times 4^{\prime} \mathrm{H}$ with intake transition *elbow. Inlet duct $10^{\prime \prime} \mathrm{D}$, and outlet stack $10^{\prime \prime} \mathrm{D}$ (accomodates to blower intake).
b) 5 Gallon chaff can with hoop, with 4"D inlet at top cover.
c) Two elbows: One ${ }^{10}$ for turn from top of roaster, and other ${ }_{1}^{8 " D}$ from Cyclone stack to blower intake.

See drawing of duct-vent arrangement.
d) SUCTION BLOWER

Model CG1 from, N, Y, Blawen with ^2HP motor frame, 3000 rpm , belteh 120/230V, single phase. Capacity:->1,000 CFM at $6^{\prime \prime}$ w.c.

12 "D wheel (steel).
e) AUTOMATIC BEAN TEMPERATURE SENSOR (thermocouple) tied to high limit bean temp. controller (digital) which shows bean temp. and set temperature, automatic water spray, ammeter \& heating time counter.
5. INSTRUCTION MANUAL

NMETEK
 We have modet \& 115826

DESCRIPTION

TYPE: Two Stage Single Speed, Thru-Flow, 120 Volt. DESIGN APPLICATION: Canister-type vacuum cleaners. Equipment not requiring separation of working air from motor ventilating air. Designed to handle clean, dry, filtered air only. For additional application information write for Bulletin 2-VT570-000.

SPECIAL FEATURES:

- Component recognized by Underwriters Laboratories Inc. and Canadian Standards Association (CSA).
- Open frame construction.
- Provision for grounding.
- Double ball bearings.

All 5.7" diameter thru-flow motors feature face mounting interchangeability. The Lamb vacuum motor line offers a wide range of performance levels to meet design needs.

TYPICAL CHARACTERISTICS*

(Not to be used for setting specifications)

MOTOR PERFORMANCE*

[^0][^1]
VOLTAGE REGULATOR for blowev:

120 VTO 140 V 10 amp .

SIVETZ COFFEE INC. 349 SW 4th Street CORVALLIS, OREGON 97333

Starters \& Contactors
$00,0,1,1 P \& 13 / 4$
Class 14 \& 40
14BP, 14CP, 14DP, 14EP, 40BP, 40CP, 40DP, 40EP

NOTE: When ordering replacement parts, give catalog number of control and part name and number.

Furnas Electric Company 1000 McKee Street, Batavia, Illinois 60510

SERIES 1900* PRESSURE SWITCH Installation and Operating Instructions

Set points Irom $0.07{ }^{\prime \prime} 1020 "$ W.C. Repelilive accurracy wilhin 3%, U.L. and C.S.S. I listed, F. M. approved.

Series 1910 pressure switch. All pressure and electrical connections and set point adjustments are on one side for easy installation.

Series 1910 switch with conduit enclosure off. Shows electric switch and set point adjustment screw.

The Dwyer-engineered force-motion amplifier increases the leverage of diaphragm movement and results in a switch with excellent sensitivity and repeatability.

Advanced design and precision construction permit these switches to perform many of the tasks of larger, costlier units. Designed for air conditioning service, they also serve many fluidics, refrigeration, oven and dryer applications. For use with air and non-combustible gases. Series 1900 switches are available with set points of 0.07 to 20 inches water column. Set point adjustment can be made easily before or after installation. Range screw is inside conduit enclosure to help prevent tampering. For easy mounting and access, pressure and electrical connections and set point adjustment are located on one side. This permits installation in corners or spaces too small for other switches.

SPECIAL MODELS AND ACCESSORIES

(See also OEM models on page 5 of Bulletin E-50)
Dwyer Accessory Part No. A-329
Special close coupled street elbow for right angle pressure connections. Can be installed on switch anytime. Zinc plated aluminum.

Weatherproof

 Enclosure:16 ga. steel enclosure for unusually wet or oily conditions. Withstands 200 hour salt spray test. Gasketed cover. Weight 5 lbs. Switch must be installed at factory. Specify "WP" in addition to switch catalog number.
Explosion-Proof Housing:
Cast iron base and aluminum dome cover. Approximate weight 7 lbs. Specify "EXPL" in addition to switch catalog number.

PHYSICAL DATA

Temperature limits: $32^{\circ} \mathrm{F}$. (-30° for dry air), to $180^{\circ} \mathrm{F}$. Maximum surge pressure: 10 psig.
Rated pressure: $45^{\prime \prime} \mathrm{H}_{2} \mathrm{O}$.
Pressure connections: y" NPT.
Electrical rating: $15 \mathrm{amps}, 120-$ 480 volts, 60 Hz . A.C. Resistive 1/6 H.P. © 125 volts, $/ /$ H.P @ 250 volts, 60 Hz . A.C. See INSTALLATION for de-rating information above $130^{\circ} \mathrm{F}$.

Wiring connections: 3 screw type, common, normally open and normally closed.
Set point adjustment: Screw type inside conduit enclosure. Housing: Zinc die casting and steel stamping. Zinc plated for 200 hour salt spray resistance. Diaphragm: Molded Silicone rubber.
Calibration spring: Stainless steel.
Weight: 1 lb .

MODEL 1910 SWITCHES: OPERATING RANGES AND DEAD BANDS.

To ordor specify Model Number	Oparating Range Inches, W.C.	Approximate Dead Band	
	At Min. Set Point	At Max. Set Point	
$1910-00$	0.07 to 0.15	.04	.05
$1910-0$	0.15 to 0.5	0.10	0.15
$1910-1$	0.4 to 1.6	0.15	0.20
$1910-5$	1.4 to 5.5	0.3	0.4
$1910-10$	3.0 to 11.0	0.4	0.5
$1910-20$	4.0 to 20.0	0.4	0.6

Suggested Specification

Differential pressure switches shall be diaphragm operated with $33 / 2^{\prime \prime}$ diaphragm to actuate a single pole double throw snap switch. Motion of the diaphragm shall be restrained by a calibrated spring that can be adjusted to set the exact pressure differential at which the electrical switch will be actuated. Motion of the diaphragm shall be transmitted to the switch button by means of a direct mechanical linkage. Switches shall be Dwyer Instruments, Inc. Catalog No. 1910- \qquad for the required operating ranges.

How to Order: See price list, Bulletin S-26.
*Patent No. 3,566,060

Magnetic Contactor Wiring

 --

$8 \mathrm{lb} / 10 \frac{1}{2} \mathrm{Kw}$ ELECTRIC ROASTER WIRING

Actual

Schematic

Rev. 2 '91
196. 10-'88
.1. 8-189

Augi 192
816 Eluc. Roaster Pavel (Rcan Views) Wirung 1 2"wide x $22^{\prime \prime}$ high $\times 8^{\prime \prime}$ dup

8 Parts List.
[Michal Bued]

Series 965

1/16 DIN

Microprocessor-Based Auto-tuning Control

User's Manual
$\$ 10.00$
Made in the U.S.A.

Firat... This manual will make your jots essier. Reading if and applying the inlormation is a

Stariting Out	Chapter 1, Page 4.
InstallWire	Chapter 2, Page 6.
Front Panal	Chapter 3, Page 13.
Sotup	Chapter 4, Page 14.
Tuning	Chapter 5, Page 19.
Appendix	Specilications, Page 24. Noise Guidelines Calibration Glossary Warranty
	Notes
J or σ NOTE: Details of a "Note" appear here, In the narrow box on tha outside of each page.	The user's manual contains inlomational noles to alert you to important details. When you see a note icon, book lor an explanation in the margin.
	Safety Information
(317)	This user's manual also has boldacas satety information notes to protect both you and your equipment. Please be attentive to them. Here are explanations:
WARNING:	(x)
Detalls of a "Warning" appear hero, in the natrow box on the outslde of each page.	The Stop Sign in the wide text cotumn alents you to a "WARNING," a satety hazard which could alfect you and the equipment. A full explanation is in the narrow column on the outside of the page.
(4)	
CAUTION: Detalis of a "Caution" appear here, in the	The Deer Crossing Sign in the wide text column alerts you to a "CAUTION," a salety or functional hazard which could affect your equipment or its performance. A full explanation is in the narrow column on the outside of the page.
narrow box on the outaide of each page.	Your Feedback

Page
Chapter 1
${ }_{4}{ }_{4}$ Starting Out With
4 General Dascrintion
5 Putting Your Control To Work
${ }_{8}$ Chapter 2
6
6
6
6 Dlmensions
insialation Procedure
Wiring the Series 965
Sensor installation Guideline
9 Input Wiring
10 Alput WWiring
12 System Wiring Example
Chapter 3
13 How To Use The Keys And Dlaplaya
13 How To Use The Keys And
13 Keys, Displays \& Load LED's

Chapter 4

14 How To Setup The Serles 965
14 Entering Setup Menu
15 Setup Paramoters
17 Operation Parameter
18 Operation Menu Table
Chapter 5
19 How To Tune And Operate
19 Tuning - Automatic
20 Tuning - Manual
20. Manual and Automatic Oporation

21 Using Alarms

24 Appendix 1
 $\begin{array}{ll}24 & \text { Appendix } \\ 24 & \text { Specifications }\end{array}$

25 Model Number Intormation
Your comments or suggestions on this manual are welcome, please send them to. Technical Wither. Wallow Controls, 1241 Bundy Blvd. Winona, MN 55987, or phone righted by Watlow Winona Inc, © 1990 , with all rights reserved.

Technical Assistance
$\begin{array}{ll}26 & \text { Appendix } 2 \\ 26 \\ \text { Installation Guidelines For Preventing Noise }\end{array}$
26 Noise Sources
26 How To Decrease Noise Sensitivity
\#you encounter a problem with your Watlow Control, review all of your contiguration
intormation to verity that your selections are consistent with yout application.. Inpuls, Outputs, Alarms, Limits, elc. It the problem persisists alter checking the above, you can get technical assistance by dialing: 1-507-454-5300
An Application Engineer will discuss your problem wilt you. Please have the lollowing intormation available when calling:

- Complete model number
- All conilguration inlormation

The bat code number is located inside on the control chassis,

Chapter 1
Starting Out With The Watlow Series 965, A Microprocessor-Based Control

General Description

Welcome to the Watiow Series 965 , a $1 / 16$ DIN microprocessor-based/single input, dual output, auto-tuning temperature control, leaturing Automatic/Manual capability with bumpless transter and aNEMA 4 X raling. In the Auto mode, the 965 has closed loop control with sensory teedback, while the Manual mode has open loop control with user defined output power level. The 965 accepts a Type J, K. T or N thermocouple or RTD input. The primary output is healing or cooling, while the secondary output is alam only.

With the Series 965 you can select either PID or ON/OFF for Output 1. You may input a complete set of PID parameters, and select automatic tuning in the heating mode from the front panel lor Output 1. This includes proporional ero, the Series 965 becomes a simple ON/OFF control with the switching zero, the Series 965 becomes a simple ON/OFF conitrol

Operator-friendly features include automatic LED indicators to aid in monitoring and selup, as well as a calibration olfset at the front panel. The Wallow Series 965 automatically stores all intormation in a non-volatile memory.

Steps To Put Your Control To Work

To put your Series 965 to work, we suggest the following steps:

- Read the user's manual.
- Plan your installation and wiring
- Cut the panel mounting hole and install the control.

Wire your Series 965 to the system.
Start the system and tune the Series 965 .
Make final adjustments to the controt parameters and record the data.
That's all there is to it

Overview of the Series 965 Menus

Before getting into the details of installing and wiring the Series 965, take a look at Figure 2, and at the three ditterent menus. "Setup." "Operation," and "Calibration." Atter you feel comfortable with the names and their functions, move on to installation and wiring.

Setup
Operation
Calibration

Configure the 965 's features to your application. Establish levels of operator access, input imits, hysteresis, output, and alarm type.

Enter the set point, PID luning values and Enter the set point, PID tuning values and alarm set point here. Parameters for propor-
ional band, resel/integral and rate/derivative, and cycle fime for Output 1, alarm low and high imits: calibration offset and auto-tune are here also.

Supply various input signals to the Series 965 , and pertorms auto-calibration. Also, select either U.S. or intemational parameters here Callibration procedures should only be at qualified personnel

Where To Go From Here

"your Series 965 is already installed and wired, go directly to "How to Use the keys and Displays," Chapter 3. 11 not, turn the page to Chapter 2, "How 10 install and Wire the Series 965 ," and proceed from there.

Chapter 2
Install and Wire the Series 965

Figure 3.
Seriae 965

Sorlas 965
Multiple Panel

Cutout Dimensiona

Figure 4-
Sarles 965
Dimensions

Installation Procedure
Follow this procedure to mount the Watlow Series 965 Temperature Control:
\int NOTE:
Removing the Soriee
965 chazala from H
mounting asalor.

1. Make a panel cutout per the dimensions in Figure 3.
2. Remove the 965 chassis from its case. Holding each side of the bezel, press in tirmly on the side grips until the tabs release. Pull the chassis out of the case. Put the chassis aside tor later installation.
3. Make sure the rounded side of the extemal case gasket is tacing the pane surface. Check to see that the gasket is not twisted, and is seated within made. Make sure the gasket is between the panel cutout and the case bezel. Ses Figure 5 A.

5A
4. While pressing the tront of the case firmly against the panel, slide the mounting collar over the back of the control. The tabs on the collar must ine up with the mounting ridges on the case for secure installation, Se Figure 5A again. Silde the collar firmly against the back of the panel etting it as tight as possible. Make sure you cannot move the case within the cutout, it you can you do not have a NEMA 4X seal.

Now, let's make sure we have a tight seal. Use your thumb to lock the tab nto place while pressing the case from side to side. Don't be alraid to pply enough pressure 10 install the control. The in into the ridges. See Figure 58. Each tooth is ver locked into the ridgeight so only one of the labs on each side are教 locked inlo the ridges at any time.
Looking at Figure 6, you see that the tabs on one side of the collar correspond with those on the opposite side. Make sure that the two correspon ing labs are the only ones locked in the ridges at the same time. If the a NEMA 4X seal. You can make a visual check, or use your tinger nail to pull out on each tab. Only one on each side is engaged, and they musi e corresponding as in Figure 6. The space between the bezel and panel must be between 0 and $0.019^{*}(0.48 \mathrm{~mm})$.

Make sure that the two correspond-
ing tabs below are lockad in the

J note:

To guarantoe a
proper NEMA 4X

soel, make sure the gasket benween the panel case is not twitetod and is seated properly. PRESS FIRMLY.

Figure 6 .

Case Rear Viow and NEMA 4X Sesl Example.

When removing the mounting collar, we suggest sliding a thin tool such as a putty knife or screwdriver under all three tabs on each side at once and pulling it back off the case.
5. Insert the control chassis into ths case and press the bezel to seat it. Make sure the inside gasket is also seated properly and not twisted. The hardware installation is complete. Proceed to the wiring section from here.

How to Wire the Series 965
The Series 965 wiring is illusirated by model number option. Check the unit and also the model number breakdown in the Appendix of this manual.

All outputs are reterenced to a de-energized state. The final wiring figure is a lypical syslem example,

When you apply power without sensor inputs on the terminal strip, the Series 65 displays ". . ." or rEs (reversed sensor) in the Upper display, and a "0" he Lower display. Press the AMM key lwice, and ER 7 is displayed for one second. This error indicates an open sensor or AD error. Remove power to must contorm to the National Electric Code and to any locally applicable codes as well.

Flgure 7.
Power Wiring

WARNing:
 To avold potential

 aloctric shock, usa Code (NEC) saloty practices whenwiring and connecting this unit to a power source and to poripheral devices.

Input Option "1", Thermocouple Input
Terminals 3 \& 5
Model \# 965A-1 0-0000

Figura 8 -
 Figure 8 - Input Option " 1 ", Input Option "1" Thermocouple Wiring Diagram.

```
3 T.C. + 
```

\& NOTE:
Extension wire for thermocouplas must be of the same alloy as the thermocouple itseif to limit errors.

Input Option "2", for 2 or 3 Wire RTD
Terminals 2, 3 \& 5
Model \# 965A-2 0-0000

Sensor Installation Guidelines

We suggest you mount the sensor at a location in your process or system
We suggest you mount the sensor at a location in your process or system the material or space you want to control. Air tlow past this sensor should be moderate. The sensor should be thermally insulated from the sensor mounting.

δ note:

Long lead lengths create alectrical resistance. There could be approximately $4.5^{\circ} \mathrm{F} / 2.5^{\circ} \mathrm{C}$ input error lor evory 10 of lead length resistance, when using a two wire RTD. That reeistance, when added to the resistance of the RTD element, a result in erroneous input to the instrument. To overcome this problem, use a three wire RTD sensor, which compensatos for lead length resistance. When ex-路

For more information on alarms see Page 21.

Output 1 Option " C ", DC Output (Open Collector) Terminals 9 \& 10
Model \# 965A -_C_ O-0000

Switched DC

Watiow's solid state swich is a low currant DC output (open collector) used to swhich an external power switching device such as an SSR or an electromechanical relay. The input specilications of the power swich hing device must match those listed for the SS switch output. The power switching device must provide isolation between the SS
switch output and load power since the SS switch output is a non-isolasted output. switch output and load power since the SS swich output is a non-isolated output. The swicciod DC voltage will be between 7 and yovD.
maximum. The oupput is shor circuil protected.
Output 1 Option "D", Mechanical Relay, Form C, 5 Amp
Terminals 8-10
Model \# 965A -_D _ $0-0000$

```
8 N.C.1,
```

${ }_{10}$ N.O. 1

Figura 11 -
5 Amp Mechanical Ralay, Output 1 , Option "D" Wiring Dlagram.

8 Not Used $94.20+1$
 $\begin{array}{ll}9 & 4 \cdot 20+1 \\ 10 & 4.20-1\end{array}$

420 mA , Output i, Option "F" Wiring
Diagram.

echanical Rolay
The electromechanical relay is an electrical and mechanical device with moving parts. When power is applied to the relay solenoid, contact closure is created through movement of the "common" contact of the relay,
Output 1 Option "F", Process, $\mathbf{4 - 2 0 \mathrm { mA }}$
Terminals 9 \& 10
Model \# 965A _ F _ 0-0000

Process Output
Proportional value dotermined by the control to balance the sensor input and set point. This value will lall between $4-20 \mathrm{~mA}$ depending on your process output type. Maximum load resistance la 300Ω.

Output 2 Option "A", No Alarm Output 2
Model \# 965A. A 0-0000

Output 2 Option "C", DC Output (Open Collector)
Terminals 6 \& 7
Model \# 965A - _ C 0-0000

Swittched DC
Wathw's solid state swith is a low current DC output (open collector) used to awich an axternal power switching device such as an SSP of an electromechanical rolay. The
nput spacilications of the power switching dovico mual match thosa listed lor the SS switch output. The pawer swilching device must provide |colation batwoen the SS swich oulput and load power since the SS switch output is a non-isolated output. The swicthod OC voltage will be between 7 and 10 VDC with a source resistance of 500Ω maximum. The output is shon circuit protected.

Output 2 Option "D", Mechanical Relay, Form C, 5 Amp Terminals 1, 6 \& 7
Model \# 965A - _ D $0-0000$

The electromechanical relay is an electrical and mechanical device with moving parts. When power is applied to the relay solenoid, contact closure is created through move ment of the "common" contact of the relay,

Alarm Wiring
月 note:
When the alarm
utput is de-anor-
gized, the N.O. contact ha open in
the alarm condition

Figure 13-
None Used, Alarm Output 2, Option "A" Wiring Dlagram.

${ }_{7} \mathrm{DC}$

Figure 14.

DC Alarm Output 2
DC Alarm Output
(Open Colliector),
 Dlagram.

```
1 N.C.2
6 COM2
7 N.O. }
```


Flgure 15 -

5 Amp Mochaniceal
Relay, Alarm Output 2, Option "D" Wirling Dlagram.

Wiring Example
WARNING:
All wiring and fusing must conform to the National Electric Code NFPA70. Con tact your local board for additional information. Falilure to observe NEC salety guidelines could reaull in injury to personne:
(4)

CAUTION:
Watlow mercury relay loads must have a unity power facior. For RESISTIVE
Figure 16 -
Syslem Wir
System Wir
Example

Chapter 3

How to Use the Keys and Displays
Use this page to learn the nature and function of the Series 965 's keys and displays.

Series 965 Keys, Displays and Load LED's

Upper Display
Red, $0.3^{n}(8 \mathrm{~mm})$ high, seven segment, three digit LED display, indicating either process actual temperature, the operating parame ler values, or an open sensor. When powering up, the Process display will be blank for 5 seconds.

Lower Display
Red 0.3" (8 mm) high, seven segment, three digit LED display, indicating the set point, output value, prompts tor data in the upper display, or error and alarm codes.

UP/DOWN Keys
When pressed simultaneousiy for 3 seconds, the Setup Menu appears displaying the LOC parameter Continue to press the UP/DOWN keys, and the Calibration Menu appears.

MODE Key

Steps the control
through the Operating mende, new data is solt entering in 5 seconds.

UP Key
Increases the value of the displayed parameter. A light touch increases the value by one. Holding the key down rate. New data is self entering in 5 seconds.

δ Note:

The upper display
wautomaticsily displays the procas value atter 1 minute
without key strokes.

Figure 17 Sorlea 965 Keys
and Displaye

Lh when the control is in Manual operation. Press the A/M key twice to enter Auto operation When blinking. this indicates that pressing the AM key v
toggle between Auto and Manual. After 5 seconds without pressing the AMM key, the LED stops blinking, and returns to its previous state.
aUTO/MAN Key
Pressed once it clears any latched alarms: it Pressed once, in clears any latched alarms. If
pressed again within 5 seconds, the control loggles between Auto and Manual mode. While in Manual mode, percent power is in the lower display.

DOWN Key
Decreases the value of the displayed parameter. A light touch decreases the value by one. Holding the key down decreases rapid rate Now data is sell entering in 5 seconds.

Chapter 4

How To Setup The Series 965

Setting up the Series 965 is a simple process. First contigure the 965 's features to your application in the Setup Menu, then enter values in the Operating DOWN keys to select data. At his point, enter the Calibration menu, and select US or Si under the dFL parameter, it necessary, Rate, reset, and ${ }^{\circ} \mathrm{F}$ appear with US, and integral, derivative and ${ }^{\circ} \mathrm{C}$ appear with SI. See Appendix 3, Page 28.

Frgure 18.
The Solup Manu.

Entering the Setup Menu

The Setup Menu displays the parameters that configure the Series 965 's leatures to your application
To enter the Setup Menu, press the UP andDOWN keys simultaneously for 3 seconds. See Figure 19. The lower display shows the LOC parameter, and the upper display shows its current level. All keys are inactive until you release both keys. You can reach the LOC parameter from anywhereexcept the CAL menu.
Use the MODE key to cycle through the menu; use the UP/DOWN keys to select Setup data. You may not see all parameters in this menu, depending on the unit's configuration and model number. Atter stepping through the menu, you will return to the control set point parameter under the Operation menu.

Igure 19
 titaring the Setup

мепи.

Setup Parameters

When you are at the top of the menu, the Series 965 displays the user lever or operation in the upper display, and the LOC parameter in the lower display When you press the MODE key, the value of the next parameter appears in the upper display, and the parameler appears in the lower display.

Aange: 0-4 Detault: 0
OC 0 : All operating parameters may be viewed or changed. Manual operation spermitted. When in manual operation, percent power is adjustable

OC 1: The set point and actual are the only visible parameters, set point is adustable in this level. Manual operation and auto-tune are permitted. When in manual operation, percent power is adjustable.

LOC 2: The set point and actual are the only visible parameters, set point is adjustable in this level. Manual operation is permitted. When in manual operation, percent power is adjustable.

OC 3: The set point and actual are the only visible paramelers, set point is adjustable in this level. Manual operation is not permitted.

LOC 4: The set point and actual are the only visible parameters, set point is not adjustable in this level of lock-out. Manual operation is not permitted.
input: Selects the sensor input type. Only those input types which are compatble with your unit will appear. See the model number information for your type. Range: J, K (appears as H), t, n, nd Defautt: Jor nd

Celsius_Fahrenhelt: Selects the units of temperature measurement for the control. The default is dependent on the dFL parameter located in the Calibration menu. If $\mathrm{dFL}=\mathrm{US}$, the delaut is F . When $\mathrm{dFL}=\mathrm{SI}$, the default is C .
Range: C or F
Range Low: Selects the low limit of the operating range. See the model number and specification in the Appendix for range values. See Table 1 on Page 16. Range: Sensor range low to rH

Detault: Low limit ol sensor type
Range HIgh: Selects the high limit of the operating range. See the model number and specification information in the Appendix for your range values, Range: Sensor range high to ri. Detault: High limit of sensor type

Output 1: Selects the output action for the primary output. Action in response to he difference between set point and process variable Range: ht, CL
Hysteresls: Selects the switching hysteresis for Output 1 when you select 0 ONOFF) under the Pb1 parameler. See Page 17 lor the Pb 1 parameter.
Range: $1^{\circ} \mathrm{F}-99^{\circ} \mathrm{F} / 1^{\circ} \mathrm{C}-55^{\circ} \mathrm{C} \quad$ Detautt: $3^{\circ} \mathrm{F} / 2^{\circ} \mathrm{C}$

Alarm Type: Determines whether the alarm type is process, deviation, or none. See Chapter 5, "Using Alarms."
Range: Pr, dE, no Detault: Pr

Latching: Selects whether the alarm is latching or non-latching. Latching alarms must be cleared before the alarm output will reset. Non-latching autoThis parameter will Range

Default: nLA
Silencing: Selects alarm silencing (inhibi) for the alarm. This parameter appears only when $\mathrm{ALL}=\mathrm{dE}$. For more information see Chapter 5, "Using Alarms. Range: On or OFF

Detault: OFF
RTD: Selects the RTD calibration curve lor RTD inputs. This parameter will nol appear unless in $=\mathrm{Hd}$. $\quad \mathrm{JIS}=0.003916 \Omega / \Omega^{\circ} \mathrm{C}$, $\operatorname{DIN}=0.003850 \Omega / \Omega^{\circ} \mathrm{C}$.
Range: din or JIS Defauk: din

Input Type	Sensor Range Low	Sensor Range High
J J	$32^{\circ} \mathrm{F} / 0^{\circ} \mathrm{C}$	$999 . \mathrm{F} / 750^{\circ} \mathrm{C}$
K (appears as H)	$99^{\circ} \mathrm{F} / .99^{\circ} \mathrm{C}$	$9999^{\circ} \mathrm{F} / 999{ }^{\circ} \mathrm{C}$
1	$90^{\circ} \mathrm{F} / .99^{\circ} \mathrm{C}$	$662^{\circ} \mathrm{F} / 350^{\circ} \mathrm{C}$
n	$32^{\circ} \mathrm{F} / 0^{\circ} \mathrm{C}$	$929{ }^{\circ} \mathrm{F} / 999^{\circ} \mathrm{C}$
nd (19)	-990\% $/ 99^{\circ} \mathrm{C}$	$999{ }^{\circ} \mathrm{F} / 600^{\circ} \mathrm{C}$

Setup Menu
Table 2-
Setup Manu
Prompts and
Descriptions
Use this page as a master copy for configuring your Series 965 Do not enter any values here; make photocoples instead

Setup Parameters	Value	Range	Factory Detaut
LOC		0.4	0
In		J, K (appears as H), t, n, nd Dependent on model number.	Jornd
C. F		Cor F	Dependent on dFL.
IL		It tor ${ }^{\text {ch }}$	Input selection dopendent.
$\mathrm{rH}^{\text {H }}$		it tor ${ }^{\text {ch }}$	linput selection dependent.
011		ht or CL	ht
HYS		$1^{\circ} \mathrm{F} \cdot 99^{\circ} \mathrm{F}, 1{ }^{\circ} \mathrm{C} \cdot 55^{\circ} \mathrm{C}$	$3^{\circ} \mathrm{F} 2^{\circ} \mathrm{C}$
ALI		Pr, de or no	Pr
Lat		LAt or nLA Dependent on AL1 - Pr or dE.	nLA
SIL		Onot Off	OFF
rid		JIS or din	din

$\delta^{\curvearrowright}$ NOTE:
The upper display vill always return to fter 1 minule without key stroka

Figure 20
The Operation Monu

Operation Parameters

Set Point: Sets the operating set point for Output 1. Represents the process value the system tries to achieve lor Output 1. "SP" does not appear, the control set point value will.

Proportional Band 1: A proportional band expressed in degrees, within which controller proportioning function is active for Output 1 . When $\mathrm{Pb} 1=0$, the unit unctions as an ON/OFF control. The switching differential is then determined by the HYS parameter.
Aange: 0 to $999^{\circ} \mathrm{F} / 0$ to $555^{\circ} \mathrm{C}$
Detaut: $25^{\circ} \mathrm{F} / 14^{\circ} \mathrm{C}$
Reset 1: A reset (integral) control action for Output 1 that automatically ellimates oftset, or "droop." between set point and actual process temperature in proportional control. This parameter will not appear it $\mathrm{Pb} 1=0$ or $\mathrm{dFL}-\mathrm{SI}$. Range: 0.00 to 9.99 repeats/minute Detauth: 0.00
Integral Time 1: An integral control action for Output 1 that automatically eliminates oftset, or "droop," between set point and actual process temperature in a proportional control. Entering 00.0 disables integral. This parameter will not
ppear if $\mathrm{Pb}=0$ or $\mathrm{dFL}=\mathrm{US}$
Range: 00.0 to 99.9 minutes/repeat Defauk: 00.0
Rate 1: The rate (derivative) function for Output 1 of the Series 965 . The rate
is determined by how last the error is changing. This parameter will not appear
$\mathrm{Pb} 1=0$ or $\mathrm{dFL}=\mathrm{S}$.
Range: 0.00 to 9.99 minutes
Default: 0.00
Derivative 1: The derivative function for Output 1 of the Series 965 . The derivative is determined by how last the efror is changing. This parameter will not appear if Pb $1=0$ or $\mathrm{dFL}=\mathrm{US}$.
Renge: 0.00 to 9.99 minutes
Selup, Chepter 4
Delaut: 0.00

- Matiniwiouth netin.-....Cycle Time 1: Expressed in seconds for a controller to complete one ON/OFF cycle for Output 1. Time between successive tum ons. This parameler will no appear if Pt $1=0$.
Range: 1 to 60 se
Range: 1 to 60 seconds
Alarm Low: This parameter represents the low process atarm or low deviation alarm. This parameter will not appear if ALt $=$ no or your unil does not have alamis. See the model number.

Defoult: in
Alan Hign: This parameier represenis the high process alarm or high deviation alarm. This parameter will not appear it ALI = no or your unit does not have alarms. See the model number.
 $\| \mathrm{ALI}=\mathrm{Pr} \quad$ Range: ALO tort
Callbration Offset: Adds or subiracts degrees from the input signal. Range: - $180^{\circ} \mathrm{F}$ to $180^{\circ} \mathrm{F} /-100^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ Default: 0

Auto-Tune: This parameler initiates auto-tune for Output 1. This parameter only appears if 0 t $1=h t$.
Range: $0=$ off, $1=$ slow, $2=$ medium, $3=$ fast Delaul: 0

Table 3 Operation Mane Prompts and Descriptiona.

Operation Menu
Use this page as a master copy for your Series 965 Operation Parameters. Do not enter any values here; make photocoples instead.

Operation Parameters	Value	Range	Factory Defauit
Pb1		0. $9999^{\circ} \mathrm{F} / 0.555^{\circ} \mathrm{C}$ O-ONOFF ceotrol. HYS -switch ditt.	$25^{\circ} \mathrm{F} / 14^{\circ} \mathrm{C}$
re1		0.00 to 9.99 repeats/minute $0.00=$ No Reset. Won' appear it Pb1 $=0$ or $\mathrm{dFL}=\mathrm{SI}$.	0.00 repeats/minute
14		00.0-99.9 minutes/pt. $0.00=$ No integral. Wont appear if $\mathrm{Pb} 1=0$ or $\mathrm{dFL}=\mathrm{US}$.	00.0 minutes/repeat
rat		0.00 to 9.99 minutes $0.00=$ No Rate. Will not appear if $\mathrm{Pb}=0$ or $\mathrm{OFL}=\mathrm{SI}$.	0.00 minutes
dE1		0.00 - 9.99 minutes, $0.00-$ No Derivative. Wont appear II $\mathrm{Pb} \mid=0$ or dFL $=$ US.	0.00 minutes
Cl		1 to 60 seconds Wonl appar if $\mathrm{Pbl}=0$, ar if 4.20 mA .	5 seconds
		-99° to 0° r. to A1HI Will not appear it ALI $=$ no.	$\begin{aligned} & -99^{\prime \prime} \\ & \text { the } \end{aligned}$
AHI -Deviation dE Process Pr		0° to 99° ALOlort Will not sppear it $A L t=n o$.	$\begin{aligned} & 99^{\circ} \\ & \mathrm{rH} \end{aligned}$
CAL		$\pm 180^{\circ} \mathrm{F} / 1{ }^{100^{\circ} \mathrm{C}}$	0
Aut		$0-3$ Appears if Oil - HL.	0

Tuning - Manual

For optimum control performance, tune the Series 965 to the thermal system. The tuning settings here are tor a broad spectrum of applications; your system may have somewhat different requirements. NOTE: This is a slow procedure,
taking trom minutes to hours to obtain optimum value.

1. Apply power to the Serles 965 and enter a sel point. Begin with these Operation Parameters: $\mathrm{Pb} 1=1, \mathrm{rE} 1 / \mathrm{t1}=0.00, \mathrm{rA} 1 / \mathrm{dE} 1=0.00, \mathrm{Ct1}=5, \mathrm{CAL}=$ $0, A U t=0$.
2. Proportional Band Adjustment: Gradually increase Pb1 unte the upper display temperature stabilizes to a constant value. The process temperature will not be right on set point because the inflial reset value is 0.00 repeats per functions as a simple ON/OFF control.) The HYS parameter delermines the switching dillerential value.
3. Reset/integral Adjustment: Gradually increase rE1, or decrease itt until the upper display temperature begins to oscillate or "hurt." Then slowly decrease rE1 or increase lt1 until the upper display stabilizes again near set point.
4. Cycle Time Adjustment: Set Ct1 as required. Faster cycle times sometimes achieve the best system control. However, It a mechanical contactor or solenoid is switching power to the load, a longer cycle time may be desirable to minimize wear on the mechanical components. Experiment until the cycle time is consistent with the quality of control you want.
5. Rate/Derivailve Adjustment: Increase rA1/dE1 to 1.00 minute. Then raise set point by 20° to $30^{\circ} \mathrm{F}$, or 11° to $17^{\circ} \mathrm{C}$. Observe the system's approach to set point. It the load lemperature overshoots set point, increase rA1/dE1 to 2.00 minutes.

Raise sel point by 20 to $30^{\circ} \mathrm{F}$, or 11 to $17^{\circ} \mathrm{C}$ and watch the approach to the new sel point. "you increase rA1/dE1 loo much, approach to sel point is very sluggish. Repeal as necessary untin the system rises to the new set point without overshooting or approaching the sel point too slowly.
6. Calibration OHset Adjustment: You may want your system to control to a temperature other than the value coming Irom the input sensor. If so, meas ure the difterence between that temperature (perhaps at another point in the system) and the process value showing in the upper display. Then enter the CAL oftset value you want, Calibration oltset adds or subtracts degrees from the value of the input signal.

Manual and Automatic Operation

To change from manual to auto operation, press the AUTO/MAN key twice.
Manuai operation provides direct (firne proporioned \% power) control of the outpuls from -100% to 100%. The 965 allows a negative output value only with a CI (Cool) selection on Ot1, a positive output value is allowed with heat only. Automatic operation provides closed loop ON/OFF or PID control. When the power level translers from a closed loop to an open loop, the 965 retains the loop control, it restores the previous set point temperature.

The MAN LED indicates auto or manual operation. When the LED is ON, the control is in Manual operation. When the LED is OFF, the control is in AUTO operation. When the LED flashes, press the key again within live seconds to complete the change in operation. If the sensor is open and LOC $=0,1$ or 2 , the Series 965 switches to Manual operation (fime proportioned \% power), if the output was stable belore the break occurred.

When translerring from auto to manual operation, the control output(s) remain stable ("bumpless," smooth transition). When transterring from manual to automatic operation, the control output(s) may change significantly, In manual the output value (\% power) appears in the lower display. In aulomatic operation, the set point appears.

Using Alarms

The Series 965 has two alarm types, Process or Deviation. A Process alarm sets an absolute temperature when the process exceeds that absolute lemper ature limit. Process alarm set points may be independently set high and low.

A Devlation alarm aleris the operator when the process strays too far from sel point. The operator can enter independent high and low alarm sentings. The causes a corresponding shitt in the teviation alarm. Example: It your set point is $100^{\circ} \mathrm{F} / 38^{\circ} \mathrm{C}$, and you have a deviation alarm set at $+7^{\circ} \mathrm{F} / 4^{\circ} \mathrm{C}$ as the high
 the low alarm at $95^{\circ} \mathrm{F} / 35^{\circ} \mathrm{C}$. It you change the set point to $130^{\circ} \mathrm{F} / 54.4^{\circ} \mathrm{C}$, the alarms follow the set point and frip at $137^{\circ} \mathrm{F} / 59^{\circ} \mathrm{C}$ and $125^{\circ} \mathrm{F} / 51.6^{\circ} \mathrm{C}$.

Alarm silencing is available with the deviation alarm. When SIL is selected as on," the non-latching mode automatically enables the alarm out-put on inifial power up. In the latching mode, the operator must manually disable the alarm by pressing the AUTO/MAN key once. In both cases alarm silencing disables the alarm output relay, but the AL LED displays the alarm condition until the process value is within the "sale" region of the deviation alarm band. Once the process value crosses into the "sate" region, both a latching or a non-latching alarm is ready. Any future deviation outside this sate band triggers an alarm.
Both Process and Deviation alarms can be latching or non-latching. The operator must manually reset a latching alarm before the alarm will reset. operator removes the condition causing the alarm, a non-latching alarm automatically resets the alarm output.
Flashing 'LO" or "HI" in the lower display indicates an alarm. The Lower display alternately shows information from the current parameter and the "LO" or "HI" alarm message at one second intervals. The plarm output is de "Lo gized and the AL LED is in.

To clear an alarm...

- First correct the alarm condition, then..,
- If the alarm is latching...

Clear il manually: press the AUTO/MAN key once as soon as the process temperature is inside the alam limil by $1^{\circ} \mathrm{F} / 0.6^{\circ} \mathrm{C}$.

- If the atarm is non-latching...

The alarm clears ilsell automatically as soon as the process
temperature is inside the alarm limil by $1^{\circ} \mathrm{F} / 0.6^{\circ} \mathrm{C}$.

When the alarm
output lo de-anerglzed, the N.O. contact is open in the alarm condition.

Figure 21 Alarm Display Examplas

Press once -
Clear
a latched
and
corrected
slam.
. wathm

$\overline{\underline{m}} \mid \leq \underline{\underline{V}}$

CAUTION:
An alarm dieplay wili be masked by an error condition of when Calibration or Sotup Menus.

How Ta Deal With Error Codes 」

Three dashes, "-. -" or "rES" (reversed sensor), in the upper display

 indicate a Series 965 error.\& NOTE: Electrical nolze or a noise or excoses
tion environmental molsture or tomporature may cause Serles 985 errors to occur. It the cause
of an error is not othorwise appar check for thome.
Figure 22 -
Error Code Display
Examples

Press twice Read error

- If operator access is LOC 0,1 or 2 ...
- Press the AUTO/MAN key twice to see the error code for one second.
- If operator access is LOC 3 or 4 ...
- The error code is already in the lower display
- Error code definitions and actions...

Er 1 - Sensor overrange error
The sensor input generated a value higher than that allowed for the range of the sensor, or the AD circuitry maltunctioned. Enter a valid input. The A/D value is above the range limits, but within the ADD conversion limits. Make sure the In parameter matches your sensor.
Er 2 - Sensor underrange error
The sensor input generated a value lower than that allowed for the range of the sensor, or the AND circuitry mallunctioned. Enter a valid input. The $A D$ value is below the range limits, but within the A/D conversion limits. Make sure the in parameter matches your sensor.

Er 3 - Ambient error

Check the specification for the amblent femperature range.
Er 4 - Configuration error
The unit's microprocessor is faulty; call the lactory
Er 5 - Non volatlle checksum error
The nonvolatile memory checksum discovered a checksum error. Unless a momentary power interruption occurred while the unit was storing data, the nonvolatile memory is bad. Call the factory

Er 6 - A/D underflow error
The AD circuit is underrange. An open or reversed polarity sensor is the most likely cause. Check the sensor: il the connection is good and lunc tions properly, call the lactory. The A/D underrange vollage is too low to convert an A/D signal. Make sure the in parameter matches your sensor.
Er 7-AD overilow error
The AD circuit is overrange. An open or reversed polarity sensor is the most likely cause. Check the sensor; ilt the connection is good, and the sensor lunctions prope AD. cignal. Make sure the in parameter matches oo high lo co your sensor.

- To clear a correcled error...

Cycle power to the control

Er 1, 2, 3, 6 \& 7 Errors - Control Outputs May Be ON

- If operator access is LOC 0,1 or $2 \ldots$
... and the control was in AUTO operation when the error occurred, it goes into MANUAL (\% power) operation. It the output power is less than 75% power, and a <5\% change in power occurred within the last two minutes, the 965 switches into Manual operation at the last Automatic power level. It the control was in MANUAL operation, it remains there. (You must press the AUTO/MAN key twice to see the error code.) The alarm output (it present) is in its alarm stale (LED Iii). The upper display reads "..." or rES. The lower display indicates the error code.

If the control was operating with stable output values when the error occurred, it continues to operale at those levels on a \% power basis. It output values were not slable, the control outputs go to 0% power (OFF)

- If operator access is LOC 3 or 4...

The control remains in AUTO operation. The control outputs shut OFF The AUTOIMAN and MODE keys are inactive. The UP/DOWN keys may be used logether lo enter the Selup Menu. The alarm output (if present) Is in its alarm state (LED liti). The upper display reads "-.." or rES. The lower display Indicates the error code.

- To clear a corrected error...

- Cycle power to the control.

Er 4 \& 5 Errors - Control Outputs Will Be OFF

- Error codes Er 4 and Er 5 result in these conditons:
- The control is in AUTO operation with the output OFF.
- The alarm output, it present, is in the alarm slate (de-energized with the LED lit).
- The upper display indicates the process value.
- The lower display indicates the error code.
- All keys are inactive.
- All Setup Menu parameters return to delault values
- The above conditions occur regardless of the value of LOC, or the presence of the Setup or Calibration Menus.
- To clear a corrected error...
- Cycle power to the control.

Specifications Appendix 1

Control Mode

- Microprocessor-based, user selectable control modes.
- Single input, single control output.
- Single alarm option.
- Control output: User selectable as: Heat, Cool.

ON/OFF: Switching differential determined by the HYS parameter for Output 1.
PID parameters:
Proportional band: 0 to $999^{\circ} \mathrm{F} / 0$ to $555^{\circ} \mathrm{C}$
Reset: 0.00 to 9.99 repeats per minute.
Integral: 0 and 00.1 to 99.9 minutes per repeat
Rate/Derivative: 0.00 to 9.99 minutes.
Cycle time: 1 to 60 seconds.
Alarm output: User selectable as:
Process, Deviation or None.

- Separate high and low set points.

ON/OFF: $1^{\circ} \mathrm{F} / 0.6^{\circ} \mathrm{C}$ switching differential

Operator Interface

- Membrane front panel.
* Dual, three digit $0.3^{\prime \prime}(8 \mathrm{~mm})$ LED displays.
- MODE, AUTO/MANUAL, UP, and DOWN keys.

Input

- Thermocouple or RTD input.
- Automatic cold junction compensation for thermocouple.
- RTD input 2 or 3 wire, platinum, 100 ohm @ $0^{\circ} \mathrm{C}$ software selectable, JIS curve \#3916 (0003916 $\Omega / \Omega^{\circ} \mathrm{C}$) or DIN curve \#3850 ($0.003850 \Omega / \Omega{ }^{\circ} \mathrm{C}$)
- Seleclable sensor break protection de-energizes control outputs to protect system
Grounded or ungrounded sensors
- ${ }^{\circ} \mathrm{F}$ or ${ }^{\circ} \mathrm{C}$ display, user selectable
- Operating ranges user selectable.

Primary Output (Heating or Cooling)

- Electromechanical relay, Form C, 5A @ 250VAC maximum, raled resistive load, 5A @ 30VDC
Switched DC (Open coilector), 500Ω minimum load resistance, $1 \mathrm{k} \Omega$ load 7 mA minimum, 10 mA maximum, non-isolated, short circuil prolected
$4-20 \mathrm{~mA}$ reverse or direct acling into a 300Ω maximum load impedance non-isolated.

Alarm

- Electromechanical relay, Form C, 5A @ 250VAC maximum, raled resistive load, 5A @ 30VDC.
- Switched DC (Open Collector), 500Ω minimum load resistance, $1 \mathrm{~K} \Omega$ load, 7 mA minimum, 10 mA maximum, non-isolated, short circuit protected.
Latching or non-latching
- Process or deviation

Accuracy

Model No

Calibration Accuracy and Sensor Conlormity: $\pm 0.1 \%$ of span, ± 1 LSD
$77^{\circ} \mathrm{F} \pm 5^{\circ} \mathrm{F}\left(25^{\circ} \mathrm{C} \pm 3^{\circ} \mathrm{C}\right)$ ambient \& rated line voltage $\pm 10 \%$.

- Accuracyure Stability $02^{\circ} \mathrm{F} 1^{\circ} \mathrm{F}$ minimum.
- Voltage Stabilly: $\pm 001 \%$ of

Agency Approvals

- UL, CSA pending.
- NEMA 4X rating pending.

Terminals

- \#6 compression type screw terminals.

Power

- $85-264 \mathrm{VAC}, 50 / 60 \mathrm{~Hz} \pm 5 \%$
- 9VA maximum
- Data retention upon power fallure via nonvolatile memory.

Operating Environment

- $3210149^{\circ} \mathrm{F} / 0$ to $65^{\circ} \mathrm{C}$.
- 0 to 90% RH, non-condensing.

Dimensions		
Helght:	2.1 in	53 mm
Width:	2.1 in	53 mm
Overall depth:	4.7 in	119 mm
Behind panel depth:	4.1 in	104 mm
Weight:	0.5 lb max.	0.2 kg

Series 965 Model Number Information

The Series 965 Model Number, listed on your unit sticker, Is delined below.
Control Serles

$965-1 / 16$ DIN, single input
and output, single
alarm, dual digital displays.

Input Type

$1=$ Type J, K, T, N thermocouple

$2=$ RTD $^{1 \circ}$

Control Output

C $=$ Swiched DC, (Open Collector), non-isolated

$D=$ Mechanical Relay, Form C, 5A

$F=$ Process 4-20mA, non-isolated

265 A

$0-0000$

```
Alarm Output
    A = Noneched DC. Open Collector
    D = Mechanical Relay, Form C,5A
```

- Mounting Collar 0822-0395-0000 - Case Gasket 0830-0402-0002 - Internal Bezel 0830-0402-0001 Gaske

Appendix 2

Noise and Installation Guidelines

Installation Guidelines For Preventing Noise

For improved electrical noise immunity, install the Series 965 as lar away as possible trom molors, relays, and other similar electrical noise generators.

Do not run low power (sensor input) Hnes in the same bundle as AC power ines. Grouping these lines in the same bundle can create electrical noise interterence which may result in error codes in the Series 965 .

The Culprit

Most noise problems stem from inadequate wiring practices. They're the majo means of coupling noise from is sources to the control circuit. The following information wiltellyou how to eirminate or decrease noise.

An information Resource
For wiring guidelines, reter to the IEEE Standard No. 518 -1982, available from IEEE, Inc. 345 East 47 th Street, New York, NY 10017.

Noise Sources

- Switches and relay contacts operating inductive loads such as molors, coils
solenoids, and relays, etc. (randomly-fired or phase angle-fired devices)
All welding machinery.
ing conductor
How To Decrease Noise Sensitivity
- Physical separation and wire routing must be given carelul consideration in planning the layout of the system, For example, A.C. power supply lines shoutd be bundled together and physically kepl separate lrom input signal lines (sensor lines). A $12^{\prime \prime}(305 \mathrm{~mm}$) minimum separation is usually effective Keep all switched output signal lines (high power level) separale from input signal lines (sensor lines). Cross other wiring at 90° angles whenever crossing lines is unavoidable.
- Another imporiant practice is to look at the system layout; identify and locate electrical noise sources such as solenoids, relay conlacts. molors, elc. Route the wire bundles and cables as lar away as possible Irom these noise sources. Don't mount relays or switching devices close to a microprocessor control. Don't have phase angle-tired devices in the same electrical enclosure or on the same power line with the control.

Before attempting to calibrate, make sure you have the proper equipment called for in each procedure.

Calibration Menu
In the Calibration Menu, various input signals must be supplied in order lor the control lo go through its auto catibration. The calibration menu can only be entered from the LOC parameter in the Setup menu. Press the UP/DOWN keys simultaneously for 3 seconds (± 1 second). The CAL parameter appears in the lower display with "no" in the upper display.

Figure 23 -
Entiering tine
Callbratlon Manu.
§ note:
Callibration values
will not be retalned unlese you are in the MANUAL mode. Do not enter the MANUAL mode untll you input parameters.

月 NOTE:

Whilia in the CalibraIIon Manu, the
OFF and the alarm
utput (it present) I

Any inadvertent change in the displayed data, when pressing the UP/DOWN keys, is ignored. Calibration values wont be retained unless you are in the MANUAL mode. Press the UPIDOWN key to change the upper display to "YES." Press the MODE key to enter the calibration sequence.

Upon entering the calibration menu, the top display window indicates CAL. The upper display continues to indicate CAL (with the exception of calibration of the $4-20 \mathrm{~mA}$ output) while the operator walks through the entire calibration parameter list. While calibrating the $4-20 \mathrm{~mA}$ output, the upper display contains a numeric value to be slewed up or down unth the output value is correct. The
 ll you calibrale your control incorrectly, you have the option to detaull to the riginal values. Once you leave the CAL menu, the values are entered

The dFL parameter allows you to select either U.S. parameters which include displaying rate, reset, and ${ }^{\circ} \mathrm{F}$, or you can select SI (System International). The parameters displayed here are integral, derivative, and ${ }^{\circ} \mathrm{C}$

Once the information has been properly established and maintained for at least Ather seconds, the MODE key may then be used to display the next prompl 10 the conliguration menu at the top of the parameter list.

ES lo calibrale, No skips to display tes hout 40.00 mV for T/C or 317.330 for RTD Hook up - J- T / C compensator, with inputs shorted. T/C units only. Enter $4-20 \mathrm{~mA}$ output calibration value for 4 mA . Enter 4.20 mA oupur calibralion vilu ior 20 mA .
Restores lactory calibration values.
actory use only.
Factory use only.

Thermocouple Field Calibration Procedure

Before attempting to calibrate, make sure you have the proper equipment

 called for in each procedure.
Equipment Required

Type "J" Reterence Compensalor with reierence juncion at $32^{\circ} \mathrm{F} / 0^{\circ} \mathrm{C}$, or
Type " J^{\prime} " Thermocouple Calibrator set at $32^{\circ} \mathrm{F} / 0^{\circ} \mathrm{C}$
Precision millivoll source, $0-40 \mathrm{mV}$ min. range, 0.01 mV resolution

Setup And Callbration

1. Connect the AC line voltage L1 and L2 10 the proper terminals on the 965 See Chapter 2.
2. Connect the millivolt source to Terminal \#5 Negative and Terminal \#3 Positive on the Series 965 terminal strip. Use regular 20-24 gauge wire.
3. Apply power to the unit and allow it to warm up for 15 minutes. After warmup put the unit in the CAL. menu. See Figure 23 on Page 28.

IMPORTANT

Whan the MANUAL LED Is ON the unit is automaticalily ealitbrating. Your sequence is VERY important. Always move to the next prompl beiora changing the callbration oquipmant.
4. Press the AUTO/MAN key twice to enter the MANUAL mode. The unir is calibrating when the MANUAL LEO is ON. Make sure the unit is in MANUAL mode only when you are in the correct parameters.
5. At the CLO prompt, enter 0.00 mV from the millivolt source to the control Allow at least 10 seconds to stabilize. Press the MODE key.
6. At the CHI prompt, enter 40.00 mV from the millivolt source to the Series 965 Allow at least 10 seconds to stabilize. Press the MODE key.
7. At the IC prompt, disconnect the millivolt source, and connect the relerence compensator or T/C calibrator to Terminal \#5 Negative, and Terminal \#3 Positive on the Series 965 terminal strip. Allow 10 seconds for the conirol to stabilize. The unil will leave the CAL mode li 1 minute passes belween key activations. To conclude the T/C calibration, advance the MODE key to the next prompt or ext the CAL menu. Press the AUTO/MAN Key twice to exit the MANUAL mode
$\delta_{\text {NOTE }}$
Bolore calibration on an Installad control, make Bure sill dats and parameters are documaniad. Sae Tablas, Pagas 15 and 18.

月 NOTE:

Not all parametere will appoar. Thay are depandent on your unlt type. Une only the steps that

RTD Field Calibration Procedure

Before attempting any callbration procedure, make sure you have the proper equipment called for in each procedure.

Equipment Required

- $1 \mathrm{~K} \Omega$ precision decade resistance box with 0.01 ohms resolution.

月 note:
Not all parametore will appear, They your untr type. Use only the stepe that apply to your unh.

Setup And Calibration

\mathcal{F} note
Batore callbration on an inatailed control, make aure all data and parametar Balore callbration on an inslailed control, make sure all data and par

1. Conneci the AC line voltage L 1 and L 2 to the proper terminals of the 965 See Chapter 2
2. Connect the decade resistance box to Terminal $\$ 2,3$ and 5 on the terminal strip. Use regular 20-24 gauge wife of the same length and type
3. Apply power to the unil and allow a to warm up for 15 minules, Atter warm-up put the unit in the CAL menu. See Figure 23 on Page 28. Press the MODE key unlu the CLO prompl is displayed

IMPORTANT

When the MANUAL LED is ON the unit Is automatically calibrating. Your saquence is VERY Imporiant. Alwaya mava to the next prompt befora changing the callibration equipment
4. Press the AUTO/MAN key iwice to enter the MANUAL mode. The unit is calibrating when the MANUAL LED is ON. Make sure the unit is in MAN calibrating when the MANUAL LED is ON. Make sure the
UAL mode only when you are in the correct parameters.
5. At the CLO prompt, set the decade resistance box to 59.59 . Allow at least 10 seconds to slabilize. Press the MODE key
6. Al the CHI prompt, set the decade resistance box to 317.33. Allow at leas 10 seconds to slabilize. The unit will leave the CAL mode if 1 mirute passes between key activations. To conclude the RTO calibration, th AUTMAN

4-20mA Output Field Calibration Procedure

Before attempting any callbration procedure, make sure you have the proper equipment called for in each procedure.

Equipment Required

$300 \Omega, 1 / 2$ watt 10% resistor.
4-1/2 digil Digital Multimeler.

Setup And Calibration

δ Note
Betore callbration on an installed control, make sure all data and Belore calibration on an installed control, make sure all data and
parameters are documented. See Setup and Operation Charts, Pages 16 and 18.

1. Connect the AC line voltage L 1 and L 2 to the proper terminals of the 965 . See Chapler 2.
2. Connect the multimeter in series with the 300Ω resistor to Terminal u9 Positive and \#10 Negative on the Series 965 terminal strip. Use regular 20 24 gauge wire.
3. Apply power to the unit and allow it to warm up for 15 minutes. Atter warmup put the unit in the CAL menu. Press the MODE key until the $4 A O$ prompt is displayed.

IMPORTANT:

When the MANUALLED is ON the unit is automatically callbrating. Your sequencen is VERY Important. Always move to the next prompt belore changing the callibration aquipment.
4. Press the AM key twice to enter the MANUAL mode. The unit is calibratirng when the MANUAL LED is ON.
5. Al the 4 AO prompt, the multimeter should read approximately 4 mA . Allow at least 10 seconds to stabilize
6. Use the UP/DOWN keys (reverse acting) to adjust the reading on the multimeter for $3.85 \mathrm{~mA} \pm 0.10 \mathrm{~mA}$. Press the MODE key.
7. Al the $2 A 0$ prompt, the multimeter should read approximately 20 mA . Allow at least 10 seconds to slabilize. The unit will leave the CAL mode it 1 minute passes between key activations except for 4.20 mA unils.
8. Use the UP/DOWN keys (reverse acling) to adjust the reading on the multimeter for $20.15 \mathrm{~mA} \pm 0.10 \mathrm{~mA}$
9. To conclude the $4-20 \mathrm{~mA}$ output calbration, advance the MODE key to the next prompl or exit the CAL menu.

月 nоte:
Not all paramplers
will appear. They
are dependent on
your unll typs. Use apply to your unil.

Alarm: A condition, generated by a controller, indicating that the process has exceeded or tallen below the sel or limit point.

Alarm Silence: Disables the alarm relay output on power up.

Antl-reset: Control feature that inhibits automatic reser action outside the proportional band
Automatic prompts: Data entry points where a microprocessor-based control "prompts" or asks the operator/programmer for information input.

Auto-tune: Automatically tunes the Series 965 PID parameters to tit the characteristics of your particular thermal system.

Sumpless transier: When ransierring from auto o manual operation, the control output(s) will not change ("bumpless," smooth transition).
Closed loop: Control system that has a sensing device lor process variable feedback.

Cold junction: Point of connection between hermocouple metais and the electronic instrument

Cold junction compensation: Electronic means junction

Cycle time: The time necessary to complete a lul ON-through-OFF period in a time proportioning control syslem.

Derivative: Anticipatory action that senses the rate of change of the process, and compensates to minimize overshoot and undershoot. Also "rate."

Deviation alarm: An alarm referenced at a fixed number of degrees, plus or minus, trom set point.

Default parameters: The parameters, or programmed instructions, permanently stored in micropro cessor software to provide a data base.

DIN: Deutsche industrial Norms, a widely-recog nized German standard for engineering units.

Display capabliliy: In a digital indicaling instru ment, the entire possible span of a particular parameter or value

Droop: Ditterence in temperature between sel point and stabillzed process temperature.

Duty cycle: Percentage of "load ON time" relative to total cycle time.

Hysteresis: in ON/OFF control, the temperature change necessary to change the output from full ON to tull OFF
Hunting: Oscillation or llucluation of process ternperature between set point and process variable.
input (sensor): Process variable information being supplied to the instrument.
integral: Control action that automatically eliminales oilsel, or droop, belween sel point and actual process lemperature. Also "reset."
Isolation: Electrical separation of sensor from high voltage circuitry. Allows for application of grounded or ungrounded sensing element.

JIS: Japanese Industrial Standards. Also Japanese Industrial Standards Committee (JISC), Es tablishes slandards on equipment and components.

NEMA 4X: Intended for indoor or ouldoor us primarily to provide a degree of protection agains corrosion, windblown dust and rain, splashing waler, and hose-directed water.

Offset: Adjustment to actual input temperature and to the temperature values the Series 965 uses tor display and control.

ON/OFF control: Control of temperature about a set point by turning the output full ON below set point and full OFF above set point in the heat mode.

Open loop: Control system with no sensory feedback.

Output: Action in response to difference between set point and process variable.

Overshoot: Condition where temperature exceeds setpoint due to initial power up or process changes.

control: Proportioning contirol,

Parameter: A physical property whose value

 determinas the response of an electronic control to given inputs.PD control: Proportioning control with rate action
II control: Proportioning control with auto-resel.
PID control: Proportioning control with auto-rese and rate.

Process variable: Thermal sysiem element to be egulated, such as time, temperature, relative humidity, etc.

Programmed display data: Displayed informalon which gives the operator/programmer the "pro rammed" or intended process information, i.e. tended set point, intended alarm IImil, elc. See Actual displayed data."

Proportional band: Span of temperature about he set point where time proportional control action lakes place.

Control
Rate: Anticipalory action that senses the rate of change of lemperature and compensates to minimize overshool, Also "derivative."

Rate Band: A thermal control band that detines where the rate (derivative) function begins. A Watlow rate band occurs centered on set point at one or more times the width of the proportional band

Reterence Juncilon: Syronymous with cold junction. See "Cold junction."

Reset: Controf action that automatically eliminates iffset, or "droop," between set point and actual process temperature. Also "integral

Reset windup inhiblt: Synonymous with antlesel. See "Anti-reset

RTD: Resistance Temperature Detector, Resistive sensing device displaying resistance versus temperature characteristics. Displays positive temperature coellicient.

Set point: Intended value of the process variable.
Switching sensitivity: in ON/OFF control, the lemperature change necessary to change the output from full ON to full OFF

Thermal system: A regulated anvironment consisting of a heat source, heal transter medium sensing device and a process variable control instrument.

Thermocouple: Terrperature sensing device that is constructed of two dissimilar metals wherein a measurable, predictable vollage is generated corresponding to temparature.

Tharmocouple break protection: Fail-sale operation thal assures output shutdown upon an apen ithermocouple condition

Three mode control: Proportioning conirol wilh reset and rate.

Time Proportioning Control: Action which varies the amount ol ON and OFF time when "close" to the set point, f.e., in the proportional band. This variance is proportional to the diflerence between he sel point and the aclual process temperature is energized depends on the system temperature.

Triac: Solid slale swilching device.
Upper display data: Displayed inlormation which gives the operator/programmer real or "actuar data, i.e., actual process temperature. See "Pro grammed display data."
Warm Start: Stan-up condition where all program information is remembered by the insirument's memory back-up protection.

Zero switching: Action that provides outpul switching only at the zero voltage crossing points of the $A C$ line.

Alarms, 21
Al
Witing, 11
Apoendix, 24
Appendix. 24
AUTO/MAN key. 13
Automatic Operation, 13, 20
Auto-tuning, 1
B
Bumplass transler, 21
Calibration, 28
D
C Output 1, 10
OC Alarm output, 11

Operation, 18

Setup. 16
Dimensions,
Faceplate 5
Panel Cutout, 6
Panel Cutout, 6
Sideviow, 6
Displays, 13
DOWN key, 13
Error Codos, 22
F, G
General Description, 4
Glossary, 32
$\stackrel{H}{\mathrm{H}}$
How To
Deal with Error Codes. 22
ecrease Noise Sensitivity, 26
Eliminate Noise, 27
istall The Sories 965,6
Selup The Series 965 -Chapler 4, 14
Tune And Operate - Chapter 5, 19
Use Alarms, 21
Use The Keys And Displays - Chapter 3, 13
Wire Power For The Series 965,8
Wire input, 8 ,
1
Installation Guidelines for Preventing Noise, 26
$\underset{\text { Keys, }}{\mathrm{J}, \mathrm{K}}$
Kays, 13
Lock Parameler, 15
Lower Display. 13

```
ual Operation, 13,20
    Mechanical Relay, }5\mathrm{ Amp.
        Oulpul 1 Wiring, 10
    Alarm Wiring, 11
    MODE KEy, 13
    Model Number, 25
    Mounting. }
N NEMA 4X, 7, 31
    Noise,
        How To Eliminate, 27
        Sources, 26
        Sensitivity. How To Decrease, 26
    O
Operating Menu and Delaull Parameters, 18
    Oaration Parameters. 17
    Output Wiring.
        5A Mechanical Relay, to
        4-20mA, 10
        OC (Open Collector), 10
        None used, 11
        5A Mechanical Relay, 11
    Overview of the Series 965,5
Panel Cutout, 6
Power Wiring, &
Preventing Noise, Installation Guidelines, 26
Process Output, 10
a, R
ns, }3
ATD Calibration, 30
RTD Sensor Wiring, 9
s
Sensot Wiring, }
Series 965 input And Oulput Overview, 4
Selop Chan, 16
Sotup Menu and Parameters, 14
    Specilications,24
    Steps To Pul Yout Control To Work, 5
    System, Planning,6
        Wiring Example, 12
T
Thermocouple Calibration, 29
    Thermocouple Sensor Wiring.9
    Tuning, 19
    u,v,w
    UP/DOWN keys, 13
    Upper Display, 13
Warranty,35
```


Warranty

The Watlow Series 965 is warranted to be tree of delects in material and workmanship for 36 months aher delivery to the first purchaser lor use, providing that the units have not been misapplied. Since Wathow has no control over heir use, and sometimes misuse, we cannot guarantee against lailure. Wat low's obligations hereunder, at Watiow's option, are limilted to replacement, epair or refund of purchase price, and parts which upon examination prove to be detective within the warranty period specified. This warranty does not apply to damage resulting from transportation, alteration, misuse, or abuse,

Returns

1. Call Watiow Customer Service, 507/454-5300, for a Return Material Authorization (RMA) number belore returning any hem for repair. We need ihis information:

- Ship to address
- Bill to address
- Contact name
- Phone number - Ship via
- Your P.O. number
- Name and phone number of person returning the material.

2. Prior approval and an RMA number, from the Customer Service Depantment, is needed when returning any unused product for credil. Make sure the RMA number is on the outside of the canton, and on all paperwork returned. Ship on a Freight Prepaid basis.
3. After we receive your return, we will examine if and determine the cause for your action.
A. In cases of manulacturing defect, we will enter a repair order, replacement order, or issue credit for material. A 20 percent reslocking charge is applied for all retumed stock controls and accessories.
4. If the unit is unrepairable, it will be returned to you with a letter of explana tion. Repair costs will not exceed 50 percent of the original cost.

Watlow Controls

Watiow Controls is a division of Watlow Electric MIg. Co., St, Louis, MO, a manufacturer of industrial electric heating products, since 1922. Wallow begins with a full set of specilications and completes an industrial product that is manulactured totally in-house in the US.A. Watlow products inclucle electric heaters, sensors, controls and switching devices. The Winona operation has been designing solid state electronic control devices since 1962, and has earned the reputation as an excellent supplier to original equipment manulacturers. These OEMs depend upon Watlow Controls to provide compatibly engineered controls which they can incorporate into their products with contidence. Wattow Controls resides in a 100,000 square loot marketing, engineering and manulacturing lacility in Winona, Minnesota.

PRINCIPLES ROASTING COFFEE BEANS

The coffee bean roasting process IS GRAPHICALLY DEPICTED on the accompanying Bean Temperature vs Flavor level chart. Final bean temperature can only be accurately measured in a fluid bed type roaster, not in a cylinder. Palatable roasts lie between $440^{\circ} \mathrm{F} \& 480^{\circ} \mathrm{F}$ which limits are "light" and Italian, whereas the best flavored roasts lie between $450^{\circ} \mathrm{F}$ \& $460^{\circ} \mathrm{F}$ which can be called "European". There are culturally sought roasts, like Arabic which can be as light as $415^{\circ} \mathrm{F}$, or burnt up to $490^{\circ} \mathrm{F}$.
The eye can only crudely judge degree of roast, and is not always accurate nor reproducible.
Most commercial coffees used in the USA are near $12 \mathrm{wt} \%$ moisture, and roast weight losses can vary from $14 \mathrm{wt} \%$ to $20+\mathrm{wt} \%, 25 \mathrm{wt} \%$ when burnt. Decaf coffees usually have about $8 \mathrm{wt} \%$ moisture, vs $12 \mathrm{wt} \%$ for naturals. Some times Colombian beans have 14 wt \% moisture, as do new crop in some growing country situations, e.g. KONA.
A well roasted bean is brown from its outer edge to inner core.
A uniformly roasted batch of beans is uniform in color when of good quality. Poor quality beans or non-uniform beans give non uniform roast bean colors.

ROASTING PROCESSES. . . are characterized by heating up the beans and driving off the moisture. Initially released water is called free water. When bean temperatures reach $340^{\circ} \mathrm{F}$, bound water is slowly released.
At near $400^{\circ} \mathrm{F}$, and slightly higher, the 2 to $4 \mathrm{wt} \%$ sucrose within the bean begins to caramelize, turn brownish and darker with increased temperatures. Water and carbon dioxide from sugar decomposition, is released with increasing amounts of aldehydes, ketones, esters, sulfides (from protein), etc. that give the characteristic coffee aromas between $430^{\circ} \mathrm{F}$ and $450^{\circ} \mathrm{F}$. At higher temperatures, the aldeghydes/ketones diminish and more acrid aromatics predominate. Light roasts have more acids than dark roasts. The bean temperature attained is closely related to bean color and taste. At about 420° F PYROLYSIS occurs, which is the decomposition of sugars caramelization and release of heat (exothermic reactions). Hence, once beans are heated to the PYROLYSIS point, the beans themselves give up heat. As roasts get darker, it is often essential to use a small amount of water Spray to STOP THE PYROLYSIS hence control degree of roast. At over $400^{\circ} \mathrm{F}$ no water is absorbed by the roasting beans, as some people unwittingly claim. During PYROLYSIS the beans swell to almost twice their green volume, and this is accompanied by "POPPING" sounds, which is very normal to good beans. Higher grown denser beans like Sumatra require about a 50 F higher treatment. Much CHAFF is released from the swelling beans at near $400^{\circ} \mathrm{F}$.

PRINCIPLES of Roaster Operations

The principle of roasting coffee beans is by using a hot air blast up a perforated opening at the base of a cone. This causes the coffee beans (or grain) to spout up at slope the center, sim ultaneously being heated and cleaned. The beans resting in the chamber ap slide down the cone to be relifted, thereby effecting good circulation for uniform heating.

It is important to keep the beans moving ALWAYS; stationary beans will overheat and possibly burn. Therefore, the operator or attendant must be present during the 8 min . roast period, INLET AIR TEMPERATURE:-----Fixed Heat Input vs Variable Air Flow and temperatures

It must be clearly understood that the heaters put out a fixed rate of heat ($\mu \frac{1}{2} \mathrm{Kw}$);
If air flow is higher, (faster blower operation with higher voltage), the issuing air temperature into the beans is lower, and visa-versa. For example, a 6 pound charge of green coffee beans, requires less air flow to spout it; hence, the entering air is hotter, and roasting occurs faster. If 9 lbs green beans are loaded, more air flow is required for spouting; and roasting time is longer due to air which is not so hot WARMINE DO NOT ROAST LESS THAN 8 lbs green coffee beans in this roasting machine.

SAFETY Features \& Consideratiody-

1) The heat will not be switched"on, unless the blowers deliver air pressure-working
2) There is only one electrical lead to heaters source of power. 240 V .
3) When the beans, reach the set or desired temperature, e.g. 4480 F . the electric heat ${ }_{\wedge}{ }^{\prime \prime}$ culs offt. The blower continues to operate, to cool beans.
4) THE ATTENDANT :UUST NOT, MUST NOT LEAVE THF ROASTER. and ~ 4.5 min utes for cooling the roastu heane.
oftion-5) The ventilation system carries away most of the released chaff (combustible) to the cyclone, and deposits the chaff in the 5 gallon can. ${ }^{I}$ he suctioned air over the roaster also removes dust and smoke (in last 3 minutes) \neq dilutes smoke.
5) The owner of the roaster should have a 60 amp circuit breakerfor the roaster; so that any "short-circuit"for whatever reason, cuts-off power. NOTE: If blown FAll's... while roasting, immediately suction off the beans ITh, If beans are below $200^{\circ}{ }^{\circ} \mathrm{y}$ means of the shop vacuum (on other circuit 110 V). If beans oue over 2000F A tilt unit, \& dump the beants and, cool the beans. CAUTION: , A fire is unlikely, if the roaster is operated as instructed. N of having beans moving or power loss, when near $400{ }^{\circ} \mathrm{F}$, can cause a few beans to burn, Even a fewh beans can give ff annoying smoke dind exaggerated fire situation. In such cases immediately cut-off heat, and switch-off circuit breaker to roaster. (2) lay roaster on concrete floor (clean) and hoe-out the beans onto the floor or onto metal tray. The glowing few beans will be seen and they will stop glowing and smoking in less than a minute. This is unlikely to occur, but to be prepared and horewarned is sensible. Applying a water spray from the pint bottie, to extinguish any glowing beans.

Understanding Roasting of Coffee Beans Degree of Roast vs Intensity of Aroma Development

Simplified Graph by Sivetz, © 1991

New Book

COFFEE
 QUALITY

by Michael Sivetz, Ba. \& Ma. Science in
Chemical Engineering
COFFEE CONSULTANT-worldwide
Manufacturer of Roasting Machinery
with 35 years industrial and comercial experiences
in the coffee industry worldwide

Outline

Pages
1-7 1. INTRODUCTION \& BACKGROUND
8,9 2. ORIGINS OF QUALITY COFFEES
10-26 3. GROWING COUNTRIES-location, geography, agriculture \& labor.
27-34

35-57
58-63
4. COMMERCE

Exporters, Shippers and Importers
5. CONSUMING COUNTRIES- processing and machinery manufacture

64-67
68
69-72
73-78
79-82
83-88
89-95
96
97-99
100
6. POLITICS: Int'l, nat'l, trade, inter related
7. CULTURAL USĒS: tradition, additives, variants \& resistance.
8. HISTORY MAP
9. GOURMET SCENE
10. BRENING BEVERAGES
11. ADVERTISING \& MARKETING
12. PHYSIOLOGICAL: Taste perceptions and caffeine influences
13. COFFEE PROPERTIES: Physical \& Chemical
14. AUTHOR's Credentials
15. BIBLIOGRAPHY
16. Check List for Coffee Qualities

Rev. March 1989
Sivetz COFFEE, Inc. phone 5037539713
COFFEE BEAN ROASTING MACHINES
ENGINEERNG \& CONSLLTING
349 S.iN. 4th ST.
CORVALUS, OREGON 97333 - U.S.A.

1) Weigh and load coffee beans into =oast chamber. Use a proper scale, and plastic pail.
2) Start blower on ventilation system. Clean out chaff can.
option 3) CLAMP $1 / 4^{\prime \prime}$ mesh screen over top of roaster. Insert
thermos
(front)
— PUSH reset button foll (How) Control. (circuit hraaker already "oi).
SET desired, "cutoff" temperature
3) "Dial-up" voltage regulator, which speedsup blower until beans are spouting. When ain pressure sises heat cover on antormatienlly.
(5) a Initially make notes of voltage $\%$ used on regulator, bean temperature (read off the digital) , and time in minutes. Also notebean color and when chaff is released - "popping" sounds 'occur at near $400^{\circ} \mathrm{F}$.
(56) EXAMRLE ${ }^{---V o l t a g e ~ r e g u l a t o r ~ d i a l ~ s e t t i n g s ~ d u r i n g ~ r o a s t i n g:-~}$

What ambient inlet air temperatures of about 70 to $80^{\circ} \mathrm{F}$, initial spouting voltage is about 70% of scale, and diminishes to 60% in 2 min , and 50% at 6 min and thereafter; until at 45% at near 4000 F bean temperature (when roasting begins) until say 4500 F End of Rest
(6) Beans begin to yellow at near 2700F; they "po p"1 and are light brown near 3S0 F . roast is about a $18 \frac{1}{2} w t \%$ loss. An American roast is about a $15 w t \%$ loss, and an Italian roast will take bean temperatures to about 4680 F and a $19 \frac{1}{2}$ wt \% loss. OBSERZVE THAT AT THE END OF THE ROAST, WHEN HEAT IS SHUT OFF, THE BEAN TEMPERATURE CONTINUES TO RISE, \& IT IS IMPORTANT TO JUDGE OVERRIDE \& TO COL BEANS IMMEDIATELY. (8) When the electric heat. goer off- (light goes off), auto water spray onto the spouting beans until the bean temperature falls to balfour $425^{\circ} \mathrm{F}$. The voltage to blower will have to be raised to spud ain flow during the a coding period, 'to maintain vigorous spouting. At 1000 F beans, voltage dial is set to zerolshut off toggle s_{w}). (9) The RONSTED beans are immediately unloaded with plastic upper pour over.

NOTE :-
The next green bean charge should be ready for filling. A"just-used"warm roaster will reduce the roasting time, $\quad 1 t_{0} 2$ minutes.
 MAINTENANCE......

Periodically, egg. after several weeks, depending on intensity of use of roaster, it may be necessary to change air filters, if they start to reduce air flow. Also if there is some indication that stones or fine coffee particles are falling into heater chamber, thesermeghal "short" out heaters (unlikely but has occurred), so dismantling/cleaning is reg'd

AIR VENTILATION \& CHAFF COLLECTION

Try to arrange roaster on steel plate or concrete floor so that it can be slid out away from $10^{\prime \prime} \mathrm{D}$ hood duct in/order to load green coffee beans as well as unload roast beans.
A 6 " high gap between top flange of roast chamber and bottom of 10 "D vent duct is sufficient to see bean movement, with 50 watt spot light shining in. That $\mathbf{\delta}^{\prime \prime}$ space will also allow outside air to be sucked in, so chaff is carried for the most part into the cyclone for collection.
SEEING THE BEANS MOVING SPOUTING AND ROASTING IS AN EXCITING PART OF THE PROCESS. The buyer provides the ducting required for vent system, Also fuel for blower.

Corvallis, Oregon

Sivetz COFFEE

Corvallis, Oregon

Sept. 1979 Rus. 8 '87
Run. $100^{\prime} 81$ \& 3 '86
DISMANTLING INSTRUCTIONS for 3.8 Kg (θ lb) $10 \frac{1}{2} \mathrm{Kw}$ ELECTRIC Coffee Bean Roaster
(45a-p)
It is advisable to have a"clamp-on "ammeter to ascertain when full current is not being drawn, to confirm if a heater element has burned out. For example, each heating element (Q 39585) puts out 3.5. KW heat at 240 volts.
3 heaters will put out $10 \frac{1}{2} \mathrm{Kw}$. each draws 15 amperes $\mathcal{C} 240 \mathrm{~V}$.
The 110 blower may draw $\rightarrow 6$ amperes,
\ldots.... if one element burns out, the amperage will fall 15 amp.
Roasting will be prolonged or become impossible be\&cuse inlet air temper-
atures are too low. Having confirmed this situation, dismantling is required to replace the "burned-out" heater. Spare heaters or replacement coils should be on hand. TIME TO DISMANTLE AND REASSEMBLE ROASTER when skilled takes about one hour.
male plug and wive for minted no ant chanter.

1) Disconnect from power source A. Work on clean bench. Have tools ready, Remove 4 b dts of bare plate bud with ins althing
2) Unscrew sheet metal screws to remeforward front panel. Then slip off 3 sided pane 1.
3) Unscrew, 8 small sheet metal screws at base flange (noteupgrientation to plate). Lift off 9" D stainless stee \uparrow tube \qquad carefully.
4) Now the ${ }^{3}$ heaters are revealed. Visually inspect for broken resistor wire.
5) REMOVE $1 / 4^{\prime \prime}$ nuts that hold heater support platerwer plenum of heaters. Twolscrews (sheet metal) hold the heater plate from below; REMOVESCREWS.
6) Disconnect two electrical wires to faulty heater.
7) REPLACE NEW HEATER, wines and support screws.
8) TEST that all heaters are working: ["short , out" Dwyer pressure switch wiring terminals] Cush heater switch "ON" - for mB seconds time only enough to have heaters glow "red" to confirm that all are working. IMMEDIATELY switch" off" power. Disconnect power/ /adi[remove Dryer "short"].

$$
\text { flaw r } 80
$$

ss
9) RE-ASSEMBLE stainless steel tube with, 12 sheet metal screws. Make sureitube is properly oriented, and seals firmly to base plate (to avoid air leakage. out).
(incus mark)
10) RE-BOLT insulated 3 sided jacket to base plate. Then front panel pith shuctuat al suras A and then two top piece 1 ks. If mine a qualified feed, to do thin wMK, please

Phone me if there are any questions. Any repair work undertaken is under your own RESPONSABILITY.
mrittm agreed

NO ROASTERS or PARTS are to be returned, without permission and disposition.
Such disassembly and vacuum cleaning is recommended periodically, since charred coffee beans or stones (foreign matter) can fall through cone holes onto radiation plate and into blower plenum-bare plate.

A carefully taken care of roaster will give years of service with only heater element replacement.

INCREASED PRODUCTION without heater replacements and less labor, can be obtained with the SIVETZ line of gas fired automatic, cutout roasters.

Coffee Bean ROASTING DATA

DATE \qquad
Corvallis, OR 97333
(503) 753-9713
by \qquad

1. ROASTING MACHINE \qquad
2. GREEN COFFEE BEANS:
a.- TYPE \& QUALITY \qquad
\qquad
b. - WEIGHT \qquad Kg 1 bs
c. - DENSITY grams/ liter
3. PURPOSES:
4. ROASTED COFFEE BEANS:

a. - WEIGHT	
b. - YIELD	
c. - LOSS	Kg

c. - LOSS
wt \%
5. TASTE
6. ROASTING DATA:

TIME min.	TEMPERATURES. OF	
inlet AIR	BEANS	BLOWER Volts

CONCLUSIONS \& RECOMMENDATIONS

Although there is very little work to be done, some repairs and cleaning are very important:

1. REPLACEMENT OF BURNED-OUT" HEATER (see dismantling instructions).
2. KEEPING ADEQUATE PARTS ON HAND, e.g. heaters.
3. INLET AIR FILTER must be kept clean. Spares can be obtained from Sears.
4. Lighting must be kept up.
5. Room ventilation must be always in working order.
6. Roast bean unloading may be done with a plastic scoop, shop vacuum, pour oves,

These tools must be kept clean and handy.
Block Patina is ok.
7. There should be no encrustation on roast chamber walls. If such develops then it should be scoured off, by laying roast chamber on side on table.
8. Care should be taken not to allow any foreign matter to fall into perforated air inlet at base of roast chamber.
9. Since some charred or broken beans may fall thru these perf. holes, the interior of the heater section should be thoroughly cleaned out when a heater is replaced.
10. There ought not be any dangling wires, worn wires, overheated wires, and the circuit breakers on both the $240 \mathrm{~V} \& 120 \mathrm{~V}$ lines must always be in working order.
11. An assortment of proper tools, " " is necessary to reduce the effort and time in replacing heaters and dismantling.
12. The 2^{*} fiber glass insulation may get worn after several years, and it must be kept in first class condition.
13. It is advisable to keep a maintenance \log book, as a useful record on possibly repetitious repairs.

Coffee Bean ROASTING DATA

1. ROASTING MACHINE \qquad
Venus
a.- TYPE \& QUALITY Vhurg
b.- WEIGHT Kg Kg
grams/ liter
2. PURPOSES:
3. ROASTED COFFEE BEANS:
a.- WEIGHT
b.- YIELD
c.- LOSS

6.7 1 bs
4. TASTE
5. ROASTING DATA:

CONCLUSIONS \& RECOMMENDATIONS

SAFETY starts with reading this manual.
And SAFETY means that the installer and operator understands how all componentswork. If at any phase there is not competency, get a qualified electrician, technician or service man.

Phone us on any questions.
The following list is simply a guide:

1. Is your circuit breaker rated at $\quad 30$ amperes at 240 volts?
2. Is there adequate lighting in work area, and a spot light into roast chamber?
3. Is the 120 volt supply to the blower voltage regulator on a seprate breaker?
4. Have you installed an adequate room vent fan?
5. Is the floor concrete or steel sheet over wood?
6. Are your service people: electrician, operator, etc. skilled at their trades?
7. Have you itemized the spare parts you need?
8. Are you attending the roaster all the time?
9. Are you monitoring the bean temperature dial thermometer frequently at end of roast period?
10. Are you there at the end moment to apply a few shots of water spray to stop roast?
11. Are you air cooling roasted beans back to room temperature?
12. Do not go over $475^{\circ} \mathrm{F}$ on Italian bean roast, because beans can be ignited over that temperature.
syotume
13. Are you prepared to deal with beans if a fire occurs?
14. Is you installation safe relative to not endangering a residence, etc.?
15. Are you fully aware that the 3 lbs green beans is a working load, and it should not be increased;nor decreased belrw 4.3 lbs ?
16. Chaff is very combustible.

Be sure to keep the top screen free of chaff, if screen is used.
Be sure to vacuum chaff off floor frequently.
17. Red pilot Tight indicates electric heating is "ON."
18. Do not work when tired, because carelessness sets in.
19. Do not allow yourself to be diverted by talking to visitors, etc.

Full attention to the manual roasting is required for safety and accuracy.
20. All wiring must be installed according to code.

COFFEE TECHNOLOGY

Examining the degree of roast

by Michael Sivetz

SIVEIZ COFFEE CO.
 349 S. W. 4th Street
 Corvaitis, OR 97133
 (503) 753-9713

The growth in the gourmet coffee retail trade since the early 70 's in the U.S. has been punctuated by the setup of the Specialty Coffee Association of America (SCAA), by the offerings of individual varieties of roasted coffee beans from original sources like Kona, Celebes, Jamaica, Kenya, Sumatra, etc. and at various levels of roasts. The Coffee Development Group (CDG) formed in the mid 80 's sponsored and supported by the ICO (International Coffee Organization) has prepared a number of general descriptive posters and flyers in order to educate the public and retailers about coffee.
In this period, there also have been over 200 new retail and wholesale roasters setting up new businesses, many of which have been quite successful.
nid all this growth and education, I have pre-
1 and sold several books, namely: Coffee Yechnology, Coffee Origin \& Use, and Coffee Qual. ity have been widely sold both to new and traditional coffee roasters. The SCAA has organized a number of trips to coffee growing areas to help educate their members, e.g. Kona, Kenya, Jamaica, Costa Rica, and future trips to Indonesia and more.
However, amid all this growrh in knowledgeable people and consumers there have been some serious lack of standards. Because different roasters service different markets, many are not truly knowledgeable, not are all totally ethical, and this confusion has hurr the integrity of what is generally known as the retail gourmet trade.
Authenticity of coffee bean origins are not always strictly used, freshness of roasted beans are often lacking, beverage preparations are frequently unsatisfactory, and so the consumer is confused and disappointed, It would take a book to cover even the several variables mentioned, but there is one aspect I'd like to address, and that is the generally communicated levels of bean roasts.
The degree of bean roast is critical to proper flavor
development, and usually at the retail level, it is not adequately defined. Even worse, many wholesale roasters do not have accurate roast standards and do not properly speak of roast standards as they should reçognize.

On top of this we have cultural and microcultural nomenclature and traditions that confound what is offered and what is requested by the consumer. I would be speaking for myself, but I've had many roasters in the trade ask me to make a clarifying statement regarding this, especially dark roasts.
But first a word about light roasts. Across the U.S., there is a wide difference in taste prefence and use on roasting. On the East Coast and in the Midwest, a light roast is predominant. In the South a darker roast than the East Coast is more evident, but in the West, Southwest, and southern Florida, dark to burnt roasts are used.

It is important to understand where burnt roast beans occur and why. There are two basic reasons for this: historical, and the type of coffee beans used.

Historically, going back perhaps 100 years and to Europe, especially the Mediterranean coastal area countries, primative roasting equipment was used, which resulted in scorched beans and oil release that coated all beans. Also low grade coffee beans with many defects will burn and scorch more readily than wholesome beans, causing non-uniform roasted bean colors and tastes. Further, the degree of roasting was an art form where the operator grew to know his machine and how it performed and related "the degree of roast" to his final objectives. With this background common terms like French and Italian roasts were evolved, without any real scientific basis.

What many people do not realize is that a proper Italian roast is nat oily when properly done with good quality beans. Oilyness comes from a cylindrical roaster that is so hot it scorches many beans, and from the manual control of the operator and his judgment and also from lower quality beans. In fact there is a wide use of low grade beans in dark-roasts because sometimes the roaster has an attitude, "that if I'm going to burn the beans, why should I use good beans?"

On the contrary, because dark roasts can cause scorching and fires and not develop a uniform bean roast with non uniform beans, it is all the more important to get a dark yet not oily roasted bean.

[^2]I wish to explain the scale of roasts used commercially. This can be related absolutely to the roasting weight loss (w/o water add back), to the final highest bean temperature and to the roast bean color. Colors can be measured on various reflectance instruments from scans of coffee grounds and is a routine measurement with many large commercial roasters. Bean temperatures can only be measured in fluid bed systems.

Roast weight loss can be measured on any system, but only after the roasting process is completed, by weighing the roasted beans and dividing the original weight of green coffee beans.
The general relationship between end-bean temperature, and roast weight loss, virtually independent of roast times in the 5 to 18 minute range, can be categorized in general as follows:
$430^{\circ} \mathrm{F}$ A light roast with about 14 wt percent loss or slightly less. This gives a very, acidy tasting cup, ustally astringent with little coffee aroma, but is widely used in the hotel and restaurant trade in the U.S.
440% A more developed roast flavor but still on acidy side, less astringent. Widely used in canned coffees, although $430^{\circ} \mathrm{F}$ may also be used.
450 F Very close to an optimum flavor roast (maximum aromatics).
460% Possibly just past an optimum flavor roast. NOTE: Different coffee beans, of varied origin and growth sometimes require final roast bean temperature different from other origins.
$460 / 465$ F European roast, often referred to as Vienna in U.S. retail shops.
470% to 475% is a genuine Italian roast, that when made with top quality coffee beans is uniformly dark brown and not oily, and is what would and does make excellent espresso demitasse coffee. Real desirable coffee flavor can be tasted without harshness or burnt taste or burnt aroma. The roast loss is close to 20 wi percent.
In Europe most connoisseurs recognize this roas and taste level. Unfortunately, in the U.S. and it Latin America where low grade beans high in defect 'are used to prepare dark roasts and oiliness appears that is recognized by the uneducated at their tradi tionally roasted coffee beans. It is their tradition, bu that is not properly roasted or quality beans. O course, such commentary brings emotions to hig) levels, but in fact it is the truth when properly examin ed. The undesireable result of such consumer concept is to ask the roaster to go to $485^{\circ} \mathrm{F}$ and take a 23 w percent loss.

Here we have lost a lot of the real coffee flavor an 'have introduced a definite burnt note. In the extremc some consumers even ask for darker coffee when roalosses reach 25 wt percent, and in my experienc 'shouldn't even be prepared.

$$
\begin{aligned}
& \text { Censing } \\
& \text { tsprissorst. }
\end{aligned}
$$

$$
9-11
$$

$$
\begin{aligned}
& \begin{array}{l}
\begin{array}{l}
\text { Sum for chars } \\
9+380 \\
420 \text { plus } 20 \mathrm{scc}=\text { ca-t.ur medium }
\end{array}
\end{array} \\
& \frac{\text { Col for Cars }}{9} \text { sars }
\end{aligned}
$$

$$
\begin{aligned}
& 13.9 \\
& 470^{\circ} \text { per } 40 \mathrm{sec}=d \operatorname{ck} \\
& \frac{\text { Sum for }(n) 2}{9 n=380} \\
& 485^{\circ} \text { plus } a f_{2} \omega=\frac{\text { nor }}{\text { nor }} \\
& \begin{array}{c}
\text { quad } \\
96
\end{array} \\
& 490
\end{aligned}
$$

[^0]: Note: Curves marked with Iractional inch designations indicato air How and vacuum through sharp-oaged thin plate test orifices of diameter indicated.

[^1]: *The pertormance data specified represents a typical or average motor. If date is required to establish acceptance specifications. contact the tactory.

[^2]: 9'88 - TEA 6 COFFEE TRADE JOURNAL

